Thesis partly supported by N2Africa:
The world population is anticipated to be around 9.1 billion in 2050 and the challenge is how to feed this huge number of people without affecting natural ecosystems. Different approaches have been proposed and closing the ‘yield gap’ on currently available agricultural lands is one of them. The concept of ‘yield gap’ is based on production ecological principles and can be estimated as the difference between a benchmark (e.g. climatic potential or water-limited yield) and the actual yield. Yield gap analysis can be performed at different scales: from field to global level. Of particular importance is estimating the yield gap and revealing the underlying explanatory factors contributing to it. As decisions are made by farmers, farm level yield gap analysis specifically contributes to better understanding, and provides entry points to increased production levels in specific farming systems. A major challenge for this type of analysis is the high data standards required which typically refer to (a) large sample size, (b) fine resolution and (c) great level of detail. Clearly, obtaining
information about biophysical characteristics and crop and farm management for individual agricultural activities within a farm, as well as farm and farmer’s characteristics and socio-economic conditions for a large number of farms is costly and time-consuming. Nowadays, the proliferation of different types of mobile phones (e.g., smartphones) equipped with sensors (e.g., GPS, camera) makes it possible to implement effective and low-cost “bottom-up” data collection approaches such as citizen science. Using these innovative
methodologies facilitate the collection of relatively large amounts of information directly from local communities. Moreover, other data collection methods such as remote sensing can provide data (e.g., on actual crop yield) for yield gap analysis.
The main objective of this thesis, therefore, was to investigate the applicability of innovative data collection approaches such as crowdsourcing and remote sensing to support the assessment and monitoring of crop yield gaps. To address the main objective, the following research questions were formulated: 1) What are the main factors causing the yield gaps at the global, regional and crop level? 2) How could data for yield gap explaining factors be collected with innovative “bottom-up” approaches? 3) What are motivations of farmers to participate in agricultural citizen science? 4) What determines smallholder farmers to use technologies (e.g., mobile SMS) for agricultural data collection? 5) How can synergy of crowdsourced data and remote sensing improve the estimation and explanation of yield variability?