Responses to inoculation of *Phaseolus* beans on N2Africa trials in Ethiopia, Tanzania, Rwanda and Zimbabwe

Eva Thuijsman, Esther Ronner

With contributions from Endalkachew Woldemeskel, Speciose Kantengwa, Edouard Rurangwa, Regis Chikowo, Vongai Chekanai, Freddy Baijukya, Ken Giller

Submission date: February 2018
N2Africa is a project funded by The Bill & Melinda Gates Foundation by a grant to Plant Production Systems, Wageningen University who lead the project together with IITA, ILRI, University of Zimbabwe and many partners in the Democratic Republic of Congo, Ethiopia, Ghana, Kenya, Malawi, Mozambique, Nigeria, Rwanda, Tanzania, Uganda and Zimbabwe.

Email: n2africa.office@wur.nl
Internet: www.N2Africa.org

Authors of this report and contact details

Name: Eva Thuijsman
Address: Plant Production Systems, Wageningen University, Droevendaalsesteeg 1, Wageningen, the Netherlands
E-mail: eva.thuijsman@wur.nl

Name: Esther Ronner
Address: Plant Production Systems, Wageningen University, Droevendaalsesteeg 1, Wageningen, the Netherlands
E-mail: esther.ronner@wur.nl

If you want to cite a report that originally was meant for use within the project only, please make sure you are allowed to disseminate or cite this report. If so, please cite as follows:

Disclaimer:

This publication has been funded by the Bill & Melinda Gates Foundation through a grant to Wageningen University entitled “Putting nitrogen fixation to work for smallholder farmers in Africa”. Its content does not represent the official position of Bill & Melinda Gates Foundation, Wageningen University or any of the other partner organisations within the project and is entirely the responsibility of the authors.

This information in this document is provided as it is and no guarantee or warranty is given that the information is fit for any particular purpose. The user thereof uses the information at their own sole risk and liability.
Table of contents

Summary ... 4
1 Ethiopia .. 4
2 Tanzania .. 5
3 Rwanda .. 5
4 Zimbabwe .. 6
References ... 7
Partners involved in the N2Africa project ... 12
Summary

Studies on responses to inoculation in bush bean (*Phaseolus vulgaris*) were carried out as part of the N2Africa project (www.n2africa.org) in Ethiopia, Tanzania, Rwanda and Zimbabwe. Inoculant treatments without fertilizer inputs significantly improved yields by 0.27 t ha$^{-1}$ compared to the unamended control in Ethiopia. The combined effect of inoculation and P fertilization was much larger and significant in all four countries. Trials in Tanzania and in Zimbabwe also included the application of N fertilizer, and manure was included on the trials in Rwanda. Largest yields were achieved when inoculant and fertilizer inputs were combined. Inoculation tended to boost responses to fertilizer inputs in Ethiopia, Rwanda and Tanzania. Detailed results per country are given below.

1 Ethiopia

Yield responses of bush bean (cv. Nasir) to inoculation and/or P fertilization were measured on demonstration trials in eight Woredas (districts) in Ethiopia. There were 32 trials in 2015, 7 trials in 2016 and 10 trials in 2017. On each trial there were a control plot and three treatment plots: (1) P + inoculant, (2) sole P, (3) sole inoculant. Figure 1 shows how in the large majority of cases treatment yields were larger than control yields. Yield responses to application of sole inoculant or sole P were similar to each other and on average around 0.3 t ha$^{-1}$ larger than the control yield. Mean yields were largest for the treatment that included inoculation as well as P fertilization: 2.12 t ha$^{-1}$ versus a control yield of 1.53 t ha$^{-1}$, as shown in table 1. A look at the standard errors shows that the variation in yields was a lot smaller for the P + inoculant treatment than for the other treatments and the control (table 1).

![Figure 1](image1.png)

<table>
<thead>
<tr>
<th>Treatment or year</th>
<th>Mean grain yield ± SE (t ha$^{-1}$)</th>
<th>Tukey’s HSD</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>P + inoculant</td>
<td>2.12 ± 0.12</td>
<td>a</td>
<td>49</td>
</tr>
<tr>
<td>P</td>
<td>1.90 ± 0.96</td>
<td>b</td>
<td>49</td>
</tr>
<tr>
<td>Inoculant</td>
<td>1.80 ± 0.96</td>
<td>b</td>
<td>49</td>
</tr>
<tr>
<td>Control</td>
<td>1.53 ± 0.82</td>
<td>c</td>
<td>49</td>
</tr>
<tr>
<td>2017 (all treatments)</td>
<td>2.24 ± 0.70</td>
<td>a</td>
<td>40</td>
</tr>
<tr>
<td>2016 (all treatments)</td>
<td>1.51 ± 0.73</td>
<td>ab</td>
<td>28</td>
</tr>
<tr>
<td>2015 (all treatments)</td>
<td>1.78 ± 0.69</td>
<td>b</td>
<td>128</td>
</tr>
</tbody>
</table>

Figure 1 & Table 1. Bush bean (cv. Nasir) grain yield when treated with inoculant and/or P fertilizer, compared to a control without inputs. The results include 32 trials from 2015, 7 trials from 2016 and 10 trials from 2017. These were installed in Ethiopia (Boricha, Dibate, Gobu Sayo, Halaba, Mandura, Shala, Soddo and Wayu Tuka).
2 Tanzania

Yield responses to inoculation with Legumefix (Legume Technology Ltd, UK) and fertilization were tested on eight demonstration trials in Tanzania for bush bean cultivar Lyamungu 90, in 2017. Results are shown in figure 2 and table 2. Inoculant application alone did not result in a significant yield increase compared to the control treatment without fertilizer and inoculant inputs. However, when inoculants were applied in combination with fertilizers, responses to these fertilizers were boosted by around a tonne per hectare, compared to the treatments with only fertilizers and no inoculation. Compared to the unamended control, the combined treatments with inoculant and fertilizers increased mean bush bean grain yields by up to 2 t ha⁻¹. Application of only NPK led to grain yield increases of a tonne compared to the control. The treatments with sole PK did not result in a significant yield response.

![Figure 2 & Table 2](image)

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Mean grain yield ± SE (t ha⁻¹)</th>
<th>Tukey’s HSD P<0.1</th>
</tr>
</thead>
<tbody>
<tr>
<td>NPK + inoculant</td>
<td>2.87 ± 0.60</td>
<td>a</td>
</tr>
<tr>
<td>PK + inoculant</td>
<td>2.32 ± 0.44</td>
<td>ab</td>
</tr>
<tr>
<td>NPK</td>
<td>1.97 ± 0.43</td>
<td>bc</td>
</tr>
<tr>
<td>PK</td>
<td>1.46 ± 0.33</td>
<td>bcd</td>
</tr>
<tr>
<td>Inoculant</td>
<td>1.28 ± 0.52</td>
<td>cd</td>
</tr>
<tr>
<td>Control</td>
<td>0.88 ± 0.37</td>
<td>d</td>
</tr>
</tbody>
</table>

Figure 2 & Table 2. Bush bean (cv. Lyamungu 90) grain yield when treated with inoculant (Legumefix) and/or (N)PK fertilizers, compared to a control without inputs, on eight trials in Tanzania (Mvomero, Lushoto and Moshi), in 2017. N = 8 for every treatment.

3 Rwanda

Rurangwa et al. (2017) tested the effects of inoculation and the application of P fertilizer and/or manure on bush bean yields during two seasons in three agro-ecological zones in Rwanda: Bugesera district (1435 masl, 800 mm annual rainfall), Kamonyi district (1661 masl, 1200-1400 mm annual rainfall) and Kayonza district (1601 masl, 1000-1200 mm annual rainfall). There were three replications per agro-ecological zone.

Inoculant alone tended to increase yields in the three sites with an average of 0.6 t ha⁻¹ compared to the unamended control, but this effect was not significant. The combined treatment with inoculation and P fertilizer (30 kg ha⁻¹) significantly (P < 0.001) improved grain yields and biomass at mid-podding compared to the control, across all tested manure rates (figure 3). Highest yields were achieved when...
all three inputs were applied together at a manure rate of 10 t ha\(^{-1}\). The responses to sole inoculation or sole P fertilizer (0.4 t ha\(^{-1}\)) were not significant.

Inoculation had no significant effect on the percentage of N derived from the atmosphere in the bean plants, which varied between 24% in Bugesera and 53% in Kamonyi. The absolute amount of N fixed was increased in treatments with inoculation combined with P fertilization, compared to the control. Averaged over the three AEZs, inoculation combined with P fertilizer increased the amount of N fixed by 17 kg N ha\(^{-1}\) compared to the control and by 64 kg N ha\(^{-1}\) when manure was added at 10 t manure ha\(^{-1}\).

Figure 3. (a, c, e) Grain and (b, d, f) biomass at mid-podding yield response of bush beans (v. RWR 2245) to inoculation, P fertilizer and three rates of manure at (a, b) Bugesera, (c, d) Kamonyi and (e, f) Kayonza, Rwanda, during the short rains in 2014. Error bars represent the standard errors of difference between means; \(-/+.\) R: without or with rhizobia (R) inoculation. This figure was taken from Rurangwa et al. (2017).

4 Zimbabwe

The effect of inoculation and the application of N and P on bush bean yield and nodulation was tested in the 2014/2015 and 2015/2016 cropping seasons on largely sandy soils in Zimbabwe. On these trials by Chekana, Chikowo and Vanlauwe (2018, under review), bush beans did not respond to rhizobia inoculation (P > 0.05). There were strong responses in the number of pods per plant, the number of seeds per pod and grain yields for either N or P treatments (each at a rate of 40 kg ha\(^{-1}\)), as shown in figure 4. The combined application of N and P increased yields on non-degraded soils fivefold. Degraded soils were non-responsive to the application of N, P and/or inoculants: bean yields and podding were barely affected.
References

List of project reports

1. N2Africa Steering Committee Terms of Reference
2. Policy on advanced training grants
3. Rhizobia Strain Isolation and Characterisation Protocol
4. Detailed country-by-country access plan for P and other agro-minerals
6. Plans for interaction with the Tropical Legumes II project (TLII) and for seed increase on a country-by-country basis
7. Implementation Plan for collaboration between N2Africa and the Soil Health and Market Access Programs of the Alliance for a Green Revolution in Africa (AGRA) plan
8. General approaches and country specific dissemination plans
9. Selected soyabean, common bean, cowpea, and groundnut varieties with proven high BNF potential and sufficient seed availability in target impact zones of N2Africa Project
10. Project launching and workshop report
11. Advancing technical skills in rhizobiology: training report
12. Characterisation of the impact zones and mandate areas in the N2Africa project
13. Production and use of rhizobial inoculants in Africa
14. Adaptive research in N2Africa impact zones: Principles, guidelines and implemented research campaigns
15. Quality assurance (QA) protocols based on African capacities and international existing standards developed
16. Collection and maintenance of elite rhizobial strains
17. MSc and PhD status report
18. Production of seeds for local distribution by farming communities engaged in the project
19. A report documenting the involvement of women in at least 50% of all farmer-related activities
20. Participatory development of indicators for monitoring and evaluating progress with project activities and their impact
21. Suitable multi-purpose forage and tree legumes for intensive smallholder meat and dairy industries in East and Central Africa N2Africa mandate areas
22. A revised manual for rhizobium methods and standard protocols available on the project website
23. Update on Inoculant production by cooperating laboratories
24. Legume seeds acquired for dissemination in the project impact zones
26. Memoranda of Understanding are formalized with key partners along the legume value chains in the impact zones
27. Existing rhizobiology laboratories upgraded
28. N2Africa Baseline report
33. N2Africa Annual Country reports 2011
34. Facilitating large-scale dissemination of Biological Nitrogen Fixation
35. Dissemination tools produced
36. Linking legume farmers to markets
37. The role of AGRA and other partners in the project defined and co-funding/financing options for scale-up of inoculum (Banks, AGRA, industry) identified
38. Progress towards achieving the vision of success of N2Africa
39. Quantifying the impact of the N2Africa project on Biological Nitrogen Fixation
40. Training agro-dealers in accessing, managing and distributing information on inoculant use
41. Opportunities for N2Africa in Ethiopia
42. N2Africa project progress report month 30
43. Review & Planning meeting Zimbabwe
44. Howard G. Buffett Foundation – N2Africa June 2012 Interim Report
45. Number of extension events organized per season per country
46. N2Africa narrative reports Month 30
47. Background information on agronomy, farming systems and ongoing projects on grain legumes in Uganda
48. Opportunities for N2Africa in Tanzania
49. Background information on agronomy, farming systems and ongoing projects on grain legumes in Ethiopia
50. Special events on the role of legumes in household nutrition and value-added processing
51. Value chain analyses of grain legumes in N2Africa: Kenya, Rwanda, eastern DRC, Ghana, Nigeria, Mozambique, Malawi, and Zimbabwe
52. Background information on agronomy, farming systems and ongoing projects on grain legumes in Tanzania
53. Nutritional benefits of legume consumption at household level in rural sub-Saharan Africa: Literature study
54. N2Africa project progress report month 42
55. Market analysis of inoculant production and use
56. Soyabean, common bean, cowpea, and groundnut varieties with high Biological Nitrogen Fixation potential identified in N2Africa impact zones
57. A N2Africa universal logo representing inoculant quality assurance
58. M&E workstream report
59. Improving legume inoculants and developing strategic alliances for their advancement
60. Rhizobium collection, testing and the identification of candidate elite strains
61. Evaluation of the progress made towards achieving the Vision of Success in N2Africa
62. Policy recommendation related to inoculant regulation and cross-border trade
63. Satellite sites and activities in the impact zones of the N2Africa project
64. Linking communities to legume processing initiatives
65. Special events on the role of legumes in household nutrition and value-added processing
66. Media events in the N2Africa project
67. Launching N2Africa Phase II – Report Uganda
68. Review of conditioning factors and constraints to legume adoption and their management in Phase II of N2Africa
69. Report on the milestones in the Supplementary N2Africa grant
70. N2Africa Phase II Launching in Tanzania
71. N2Africa Phase II 6 months report
72. Involvement of women in at least 50% of all farmer-related activities
74. Managing factors that affect the adoption of grain legumes in Uganda in the N2Africa project
75. Managing factors that affect the adoption of grain legumes in Ethiopia in the N2Africa project
76. Managing factors that affect the adoption of grain legumes in Tanzania in the N2Africa project
77. N2Africa Action Areas in Ethiopia, Ghana, Nigeria, Tanzania, and Uganda in 2014
78. N2Africa Annual Report Phase II Year 1
79. N2Africa: taking stock and moving forward. Workshop report
81. N2Africa Annual Report 2015
82. Value Chain Analysis of Grain Legumes in Borno State, Nigeria
83. Baseline report Borno State
84. N2Africa Annual Report 2015 DR Congo
85. N2Africa Annual Report 2015 Rwanda
86. N2Africa Annual Report 2015 Malawi
87. Contract Sprayer in Borno State, Nigeria
88. N2Africa Baseline Report II Ethiopia, Tanzania, Uganda, version 2.1
89. N2Africa rhizobial isolates in Kenya
90. N2Africa Early Impact Survey, Rwanda
91. N2Africa Early Impact Survey, Ghana
92. Tracing seed diffusion from introduced legume seeds through N2Africa demonstration trials and seed-input packages
93. The role of legumes in sustainable intensification – priority areas for research in northern Ghana
94. The role of legumes in sustainable intensification – priority areas for research in western Kenya
95. N2Africa Early Impact Survey, Phase I
96. Legumes in sustainable intensification – case study report PROIntensAfrica
98. OSSOM Launch and Planning Meeting for the west Kenya Long Rains 2017
99. Tailoring and adaptation in N2Africa demonstration trials
100. N2Africa Project DR Congo Exit Strategy
101. N2Africa Project Kenya Exit Strategy
102. N2Africa Project Malawi Exit Strategy
103. N2Africa Project Mozambique Exit Strategy
104. N2Africa Project Rwanda Exit Strategy
105. N2Africa Project Zimbabwe Exit Strategy
106. N2Africa Annual Report 2017
107. N2Africa review of policies relating to legume intensification in the N2Africa countries
108. Stakeholder Consultations report
109. Dissemination survey Tanzania
110. Climbing bean x highland banana intercropping in the Ugandan highlands
111. N2Africa Annual Report 2018
112. N2Africa Annual Report 2018 Ethiopia
113. N2Africa Annual Report 2018 Ghana
114. N2Africa Annual Report 2018 Nigeria, Borno State
115. N2Africa Annual Report 2018 Tanzania
117. N2Africa training and extension materials
118. Responses to inoculation of Phaseolus beans