EVALUATION OF LIMING, INOCULATION AND PHOSPHORUS FERTILIZER ON YIELD COMPONENTS AND YIELD OF SOYBEAN (Glycine max (L.)) MERRILL IN THE GUINEA SAVANNAH OF GHANA

IBRAHIM ISSIFU

2018
EVALUATION OF LIMING, INOCULATION AND PHOSPHORUS FERTILIZER ON YIELD COMPONENTS AND YIELD OF SOYBEAN (Glycine max (L.)) MERRILL IN THE GUINEA SAVANNAHOF GHANA

BY

IBRAHIM ISSIFU (B.Sc. AGRICULTURE TECHNOLOGY)

(UDS/MCS/0023/14)

DISSEYATION SUBMITTED TO THE DEPARTMENT OF AGRONOMY, FACULTY OF AGRICULTURE, UNIVERSITY FOR DEVELOPMENT STUDIES, IN PARTIAL FULFILMENT FOR THE AWARD OF MASTER OF PHILOSOPHY DEGREE IN CROP SCIENCE

MAY, 2018
DECLARATION

Student

I hereby declare that this thesis is the result of my own original work and that no part of it has been presented for another degree in this University or elsewhere. Works of others, which served as sources of information, have been duly acknowledged.

Signature... Date..

ISSIFU IBRAHIM

SUPERVISORS’

We hereby declare that the preparation and presentation of the thesis were supervised in accordance with the guidelines on supervision of thesis laid down by the University for Development Studies.

Principal Supervisor’s

Signature: Date..

Prof. ISRAEL K. DZOMEKU

Co-Supervisor’s

Signature: Date..

Dr. AHMED MAHAMA RUFAI
ABSTRACT

An experiment was conducted to evaluate the combined effect of liming, inoculation and phosphorus fertilizer on growth, nodulation, nitrogen fixation, yield components and grain yield of soybean (*Glycine max* (L.) MERRILL) in the Guinea savannah of Ghana. The study was conducted between December 2015 and April 2016 in front of the greenhouse of the University for Development Studies at Nyankpala Campus. The experiment was laid out in a split-plot design with four replications. Liming (Organic, Inorganic and Control) was the main plot and soil amendment (Phosphorus, Inoculation, Phosphorus + Inoculation and Control) the subplots. The experimental soil had an initial pH of 4.5 and low cation exchange capacity (CEC) of 2.6 meq/100 g. Treatments increased soil pH to 8.5 and CEC to 4.1 meq/100 g. The study showed that, liming with CaCO₃ at 18 g/10 kg of soil increased plant height by about 58 % over the other liming materials used. Inorganic lime (CaCO₃) at a rate of 18g per pot performed higher in all parameters than oil palm leaf ash and control. Phosphorus at 148kg per hectare TSP also recorded better results among the soil amendments in all parameters except number of nodules per plant and grain yield of the soybean. There was interaction between liming and soil amendment effects in days to fifty percent flowering, leaf area index, fresh shoot weight and grain yield. Inorganic lime (CaCO₃) at 18 g / 10 kg pot of soil and phosphorus fertilizer at 148 kg/ha TSP gave soybean plants better chance to harness soil nutrients and had an influence on vegetative growth and eventually on grain yield by about 52 % over the other combinations. The study therefore recommended liming and phosphorus fertilizer applications be adopted for farmers growing soybean in northern Ghana.
ACKNOWLEDGEMENT

I am first and foremost thankful to the most gracious and most dependable God for His divine inspiration and protection. My profound gratitude goes to my selfless supervisors, Prof. Israel K. Dzomeku and Dr. Ahmed Mahama Rufai, Associate Professor and Senior Lecturer respectively in the Agronomy Department, whose constructive criticism, inspiration, dedication and efficient supervision have led to the success of this project work. I am also grateful to all lecturers of the Department, for their criticism and suggestions during seminar presentations. My warmest gratitude also goes to the N2Africa Project of the International Institute of Tropical Agriculture, Ghana, particularly Professor Samuel Adjei Nsiah, Ghana Country Coordinator for sponsoring this work, Mr. Nuhu Inusah for the pieces of advice and material assistance during the collection of my data. My special thanks go to Mr Yussif Mashud a brother for his encouragement and material assistance during the course of this study. I say big kudos for their encouragement and rich experience shared with me during the study. Many thanks also go to Mohammed Adam, final year student of Faculty of Education for his encouragement and help in the typing of my work. I also express my sincere appreciation to Mr. Abu Amadu, and Sulemana Jamal all teachers of Gushegu Senior High School for their suggestions and encouragements during the study. I am highly indebted to my friend and role model, Mr. Yahaya Damba, Assistant Lecturer at Biotechnology Department, with his encouragement, rich experience, moral and spiritual support during the study. Finally, I wish to thank all course mates especially Mr. Wuni Mawiya for their constructive advice and encouragement.
DEDICATION

To my late father Alhaji Issifu Abiwoyi Olalere, lovely mother, Hajia Salimatu Salawudeen, my wife, Yussif Rahinatu and our beautiful daughter Taskin Dupe Ibrahim for their patience, support and prayers.
TABLE OF CONTENTS

DECLARATION ... i

ABSTRACT .. ii

ACKNOWLEDGEMENT .. iii

DEDICATION ... iv

TABLE OF CONTENTS ... v

LISTS OF TABLES ... xi

LISTS OF FIGURES .. xii

ACRONYMS .. xiv

CHAPTER ONE ... 1

1.0 INTRODUCTION .. 1

1.1 Background .. 1

1.2 Problem statement ... 3

1.3 Justification of the study .. 4

1.4 Objectives of the study .. 5

CHAPTER TWO ... 6

2.0 Literature review .. 6

2.1 Fertility of tropical soils .. 6

2.2 Soils of northern Ghana ... 7

Table 1: Average soil fertility status of seven administrative regions of Ghana. 10

2.3 Importance of soybean ... 10

2.4 Uses of soybean .. 12

2.5 Soybean as a protein supplement .. 14

Table 2: Nutrient Content (%) in Soybean compared to other food stuffs per 100gm 15

2.6 Botany and taxonomy of soybean ... 16
2.7 Origin and distribution ... 17
2.8 World production of soybean ... 18
2.9 Morphological descriptions of soybean .. 19
2.10 Soil and climatic requirements ... 20
 2.10.1 Soil requirements ... 20
 2.10.2 Climatic requirements ... 21
 2.10.3 Moisture requirement of soybean ... 24
 2.10.4 Temperature and photoperiod ... 25
2.11 Agronomic practices in soybean cultivation 26
 2.11.1 Sowing and planting .. 26
 2.11.2 Fertilizer application .. 26
 2.11.3 Weeding .. 28
 2.11.4 Pests and diseases control of soybeans 29
 2.11.5 Harvesting and storage of soybeans 30
2.12 Factors affecting soybean production 31
 2.12.1 Soil acidity ... 31
Table 3: Classification of soil acidity according to the level of pH 31
 2.12.2 Aluminum and hydrogen toxicity 33
 2.12.3 Nutrient solubility and availability .. 34
 2.12.4 Nitrogen .. 34
 2.12.5 Micronutrients .. 35
 2.12.6 Microbial growth and activity .. 35
 2.12.7 Species diversity and richness of plants 36
2.13 Ameliorating soil acidity ... 36
 2.13.1 Organic amendment .. 36
2.13.2 Chemical amendment (liming) ... 38
2.13.3 Liming materials .. 39
2.13.4 Estimation of lime rate .. 40
2.13.5 Liming time, placement and frequency of application 41
2.13.6 Role of biological nitrogen fixation in cropping system 43
2.13.7 Nitrogen fixation ... 45
2.13.8 Factors influencing biological nitrogen fixation (rhizobia inoculation) in legumes 49
2.13.8.1 Indigenous / native rhizobia ... 50
2.13.8.2 Nutrient management systems and their deficiencies in legume - rhizobia symbiosis 51
2.13.8.3 Optimization of n fixation ... 53
2.13.8.5 Legume contribution in biological nitrogen fixation 55
2.14 Need for nitrogen in soybean .. 55
2.15 Role of phosphorus in biological nitrogen fixation 57
2.16 Effect of phosphorous .. 61
2.17 Effect of phosphorus on nodulation and nitrogen fixation 62
2.18 The need for inoculation .. 63
2.19 Effect of interaction of phosphorus and inoculation on nodulation, growth and seed yield of soybean ... 65
2.20 Effect of nitrogen and phosphorous on nodulation, growth and yield of soybean 66
2.21 Lime .. 67
2.22 Combined effects of p fertilizer and lime .. 68
2.23 Effects of lime and phosphorus fertilizers on soil chemical properties 68
2.24 Effect of lime and P fertilizer on N, P uptake and N\textsubscript{2} fixation of soybean 70
2.24.1 Nitrogen and phosphorus uptake by plants ... 70
2.24.2 Effects of lime and p fertilizer on soil microbial biomass 71
2.25 Growth analysis ... 72
2.26 Agricultural importance of leguminous crops ... 73

CHAPTER THREE .. 75
3.0 MATERIALS AND METHODS ... 75
3.1 Study area ... 75
3.2 Experimental design and lay-out ... 76
3.3 Soil sampling .. 76
3.4 Filling of pots .. 76
3.5 Inoculation of seeds ... 77
3.6 Agronomic practices .. 77
3.7 Soil analysis ... 78
3.7.1 Soil pH .. 78
3.7.2 Total nitrogen ... 78
3.7.3 Available phosphorus .. 78
3.8 DATA COLLECTED ... 79
3.8.1 Determination of plant height ... 79
3.8.2 Number of leaves per plant ... 79
3.8.3 Leaf area index .. 79
3.8.4 Days to 50% flowering .. 80
3.8.5 Number of nodules per plant .. 80
3.8.6 Effective nodules ... 80
3.8.7 Determination of shoot fresh and dry weight .. 80
3.8.8 Days to podding and number of pods per plant 81
3.8.9 Grain yield ... 81
3.10 Statistical analysis ... 81

CHAPTER FOUR .. 82

4.0 RESULTS ... 82
4.1 Soil chemical analysis ... 82

Table: 4 Some Soil Properties Influenced By Liming ... 83
4.2 Plant height ... 84
4.3 Number of leaves per plant ... 85
4.4 Leaf area index .. 87
4.5 Fresh straw weight .. 89
4.6 Dry straw weight .. 90
4.7 Days to 50 % flowering .. 92
4.8 Days to podding ... 93
4.9 Number of nodules ... 94
4.10 Effective nodulation ... 94

Table 5: Effects of Liming and Soil Amendments on days to Podding, Number of
nodules and number Of Effective Nodules. Values (Mean) with dissimilar Letters in a
column are significantly different at P ≤ 0.05... 95
4.11 Grain yield ... 96
4.12 Correlation between days to flowering and days to podding 97
4.13 Correlation between number of nodules and effective nodulation 98
4.14 Correlation between number of nodules and number of pods per plants 98
4.15 Correlation between number of pods per plant to grain yield 99
4.16 Correlation between dry shoot weight and grain yield 100
4.17 Plant chemical analysis .. 101

CHAPTER FIVE ... 104
LISTS OF TABLES

Table 1: Average soil fertility status of seven administrative regions of Ghana.10

Table 2: Nutrient Content (%) in Soybean compared to other food stuffs per 100gm....15

Table 3: Classification of soil acidity according to the level of pH..........................31

Table 4 Some Soil Properties Influenced By Liming..83

Table 5: Effect Of Liming And Soil Amendments On Days To Podding, Number Of
Nodules And Number Of Effective Nodules. Values (Mean) With Dissimilar Letters In A
Column Are Significantly Different At P ≤ 0.05...95
LISTS OF FIGURES

Figure 1: Effect of liming on plant height at 5 to 11 WAP. Bars represent standard error of differences (SED)…………………………………………………………………………………………84

Figure 2: effect of soil amendment on plant height at 5 to 11 WAP. Bars represent standard error of differences (SED). ..85

Figure 3: effect of liming on the number of leaves per plant at 5 to 11 WAP. Bars represent standard error of differences (SED). ..86

Figure 4: Effect of soil amendment on the number of leaves per plant at 5 to 11 WAP. Bars represent standard error of difference (SED) ..87

Figure 5: Effect of liming on leaf area index at 5 to 11 WAP. Bars represent standard error of difference (SED). ..88

Figure 6: Effect of soil amendment on leaf area index at 5 to WAP. Bars represent standard error of difference (SED) ..89

Figure 7: Effect of liming on fresh shoot weight of plants. Bars represent standard error of difference (SED). ..90

Figure 8: Effect of different soil amendment on dry shoot weight of soybean plants. Bars represent standard error of difference (SED) ..91

Figure 9: Effect of soil amendment on dry straw weight of plants. Bars represent standard error of difference (SED) ..92

Figure 10: Effect of liming and soil amendment on days to 50 % flowering. Bars represent standard error of difference (SED). ..93

Figure 11: The interaction effect of liming and soil amendment on grain yield at harvest. Bars represent standard error of difference (SED) ..96
Figure 12: the correlation effect of days to flowering to days to podding. Positive r value showed positive correlation and p = 000 indicated that the correlation is significant at p ≤ 0.05. ...97

Figure 13: the correlation effect of number of nodules to effective nodulation. Positive r value showed positive correlation and p = 000 indicated that the correlation is significant at p ≤ 0.05. ...98

Figure 14: the correlation effect of number of nodules to number of pods per plant. Positive r value showed positive correlation and p = 000 indicated that the correlation is significant at p ≤ 0.05. ...99

Figure 15: the correlation effect of number of pods per grain yield per hectare. Positive r value showed positive correlation and p = 000 indicated that the correlation is significant at p ≤ 0.05. ...100

Figure 16: the correlation effect of dry shoot weight per hectare to grain yield per hectare. Positive r value showed positive correlation and p = 000 indicated that the correlation is significant at p ≤ 0.05. ...101

Figure 17: effect of liming and soil amendment on nitrogen level of plants. Bars represent standard error of difference (SED). ...102

Figure 18: effect of liming and soil amendment on phosphorus level of plants. Bars represent standard error of difference (SED). ...103
ACRONYMS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>%</td>
<td>Percentage</td>
</tr>
<tr>
<td>≤</td>
<td>Less than or equal to</td>
</tr>
<tr>
<td>≥</td>
<td>Greater than or equal to</td>
</tr>
<tr>
<td>ACT</td>
<td>Palm leave ash control</td>
</tr>
<tr>
<td>ADF</td>
<td>Air Defense Force</td>
</tr>
<tr>
<td>AI</td>
<td>Palm Leave ash + Inoculation</td>
</tr>
<tr>
<td>Al(OH)$_3$</td>
<td>Aluminium (III) hydroxide</td>
</tr>
<tr>
<td>Al$^{3+}$</td>
<td>Aluminium ion</td>
</tr>
<tr>
<td>ANOVA</td>
<td>Analysis of Variance</td>
</tr>
<tr>
<td>AP</td>
<td>Palm Leave ash + Phosphorus</td>
</tr>
<tr>
<td>HCO$_3^-$</td>
<td>Bicarbonate</td>
</tr>
<tr>
<td>BNF</td>
<td>Biological nitrogen fixation</td>
</tr>
<tr>
<td>B</td>
<td>Boron</td>
</tr>
<tr>
<td>C</td>
<td>Carbon</td>
</tr>
<tr>
<td>C1</td>
<td>Chlorine C$_3$ plant</td>
</tr>
<tr>
<td>Ca (OH)$_2$</td>
<td>Calcium hydroxide</td>
</tr>
<tr>
<td>Ca$^{2+}$</td>
<td>Calcium ion</td>
</tr>
<tr>
<td>CaCO$_3$</td>
<td>Calcium Trioxocarbonate (IV)</td>
</tr>
<tr>
<td>CaO</td>
<td>Calcium Oxide</td>
</tr>
<tr>
<td>CO$_3^{2-}$</td>
<td>Carbonate ion</td>
</tr>
<tr>
<td>CEC</td>
<td>Cation exchange capacity</td>
</tr>
<tr>
<td>Cm</td>
<td>Centimeter</td>
</tr>
</tbody>
</table>
CO Carbon monoxide
CO₂ Carbon dioxide
Cu Copper
CGR Crop growth rate
CSIR Council for scientific and industrial research
Cu²⁺ Copper ion
DAP Diammonium Phosphate
EA Exchangeable Acidity
Fe Iron
Fe²⁺ Iron ion
FAO Food and Agriculture Organization
FYM Farm Yard Manure
H Hydrogen
H⁺ Hydrogen ion
H₂O Water
H₂PO₄ Dihydrogen phosphate
ha Hectare
HPO₄ Hydrogen phosphate
H Hydrogen
IAEA International Atomic Energy Agency
ICRISAT International Crops Research Institute for the Semi-Arid Tropics
IITA International Institute for Tropical Agriculture
K Potassium
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Term</th>
</tr>
</thead>
<tbody>
<tr>
<td>kg</td>
<td>Kilogram</td>
</tr>
<tr>
<td>kg/ha</td>
<td>Kilogram per hectare</td>
</tr>
<tr>
<td>LAI</td>
<td>Leaf area index</td>
</tr>
<tr>
<td>LAD</td>
<td>Leaf area duration</td>
</tr>
<tr>
<td>LAR</td>
<td>Leaf area ratio</td>
</tr>
<tr>
<td>LRF</td>
<td>Lime Requirement Factor</td>
</tr>
<tr>
<td>LSD</td>
<td>Least significant differences</td>
</tr>
<tr>
<td>Mg</td>
<td>Magnesium</td>
</tr>
<tr>
<td>Mg$^{2+}$</td>
<td>Magnesium ion</td>
</tr>
<tr>
<td>Mn</td>
<td>Manganese</td>
</tr>
<tr>
<td>Mn$^{4+}$</td>
<td>Manganese ion</td>
</tr>
<tr>
<td>Mo</td>
<td>Molybdenum</td>
</tr>
<tr>
<td>MoFA</td>
<td>Ministry of Food and Agriculture</td>
</tr>
<tr>
<td>N</td>
<td>Nitrogen</td>
</tr>
<tr>
<td>N-P-K</td>
<td>Nitrogen, Phosphorus, Potassium</td>
</tr>
<tr>
<td>N$_2$</td>
<td>Nitrogen gas</td>
</tr>
<tr>
<td>Na</td>
<td>Sodium</td>
</tr>
<tr>
<td>NAR</td>
<td>Net assimilation rate (NAR)</td>
</tr>
<tr>
<td>Ni</td>
<td>Nickel</td>
</tr>
<tr>
<td>ns</td>
<td>Not significant</td>
</tr>
<tr>
<td>O</td>
<td>Oxygen</td>
</tr>
<tr>
<td>°C</td>
<td>Degree Celsius</td>
</tr>
<tr>
<td>O.C</td>
<td>Organic Carbon</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Full Form</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------</td>
</tr>
<tr>
<td>OM</td>
<td>Organic matter</td>
</tr>
<tr>
<td>P₂O₅</td>
<td>Phosphorus pentoxide</td>
</tr>
<tr>
<td>PAS</td>
<td>Permissible Acid Saturation,</td>
</tr>
<tr>
<td>pH</td>
<td>Hydrogen Concentration</td>
</tr>
<tr>
<td>P</td>
<td>Phosphorus</td>
</tr>
<tr>
<td>ppm</td>
<td>Parts per million</td>
</tr>
<tr>
<td>RCBD</td>
<td>Randomized complete block design</td>
</tr>
<tr>
<td>RCGR</td>
<td>Relative crop growth rate</td>
</tr>
<tr>
<td>S</td>
<td>Sulphur</td>
</tr>
<tr>
<td>SARI</td>
<td>Savannah Agriculture Research Institute</td>
</tr>
<tr>
<td>SMB</td>
<td>Soil Microbial Biomass</td>
</tr>
<tr>
<td>ton</td>
<td>Tonnes</td>
</tr>
<tr>
<td>TSP</td>
<td>Triple Super Phosphate</td>
</tr>
<tr>
<td>UDS</td>
<td>University for Development Studies</td>
</tr>
<tr>
<td>US$</td>
<td>United State dollar</td>
</tr>
<tr>
<td>USA</td>
<td>United State of America</td>
</tr>
<tr>
<td>USDA</td>
<td>United State Department of Agriculture</td>
</tr>
<tr>
<td>WAP</td>
<td>Weeks after planting</td>
</tr>
<tr>
<td>Zn</td>
<td>Zinc</td>
</tr>
</tbody>
</table>
CHAPTER ONE

1.0 INTRODUCTION

1.1 Background

Soybean (Glycine max (L.) Merrill) is the world’s leading source of oil and protein. It has the highest protein content of all food crops and is second only to groundnut in terms of oil content among food legumes (Fekadu et al., 2009; Alghamdi, 2004). Economically, soybean is an important leguminous crop worldwide (Plahar, 2006). It plays a very important function in the natural ecosystem and agriculture, where its ability to fix atmospheric N_2 in symbiosis with rhizobium makes it a very good colonizer of low-N environment (Graham and Vance, 2003). Soybean is a pea plant belonging to the botanical family leguminosae. Like all other peas, beans, lentils and peanuts, which include some 500 genera and more than 12,000 species, it belongs to the subfamily papilionideae (Shurleff and Aoyagi, 2007).

Soybean is an important global legume crop that grows in the tropical, sub-tropical and temperate climates like peas, beans, lentils, peanuts. It has been called "yellow jewel", "great treasure", "nature's miracle protein" and "meat of the field" (Noureldin et al., 1998). Soybean is a multipurpose crop which is drought tolerant and grown for oil production, human food, livestock feed, industrial purposes, and recently for bio-energy (Mathu et al., 2010). Soybean is well-known as an important source of protein in the human diet and animal ration; containing substantial amounts of all the essential amino acids, oil, minerals and vitamins (Tefera, 2010). It is an economically important leguminous crop in Ghana widely cultivated in different agro-ecologies, yet its production still lags behind annual consumption (Plahar, 2006).
Soybean was introduced in Ghana in 1910 (Plahar, 2006) and was used by local farmers in the northern sector. The northern parts of the country lead soybean production in Ghana. Mean acreage under soybean cultivation per farmer in the northern part of Ghana was 3.4 acres in 2006 with individual farm size holdings ranging from 0.5 acres to 80 acres. In 2006, the southern sector production was still comparatively at the rudimentary stages except for Ejura Farms of about 300 acres and a few satellite farmers (Plahar, 2006). The average soybean yields for northern Ghana (Northern, Upper West and Upper East regions) was about 1.5 t / ha on the farmers' field compared to that of USA which was 4.6 t / ha (Lawson et al., 2008).

Ghana's current production is about 15,000 metric tonnes of soybean grain annually (MoFA and CSIR, 2005), but total domestic demand for cooking oil, seasoning and animal feed cake is estimated at nearly 30,000 metric tonnes per year (ADF, 2004). Promotion of the nutritional and economic values of the crop is being done in Ghana by the Ministry of Food and Agriculture, and this has resulted in rapid expansion in production during the past decade (Sarkodie-Addo et al., 2006).

Soybean like any all other legumes also improves soil fertility by converting atmospheric nitrogen from the soil for its own use, which also benefits subsequent crops in rotation. Fixation of atmospheric nitrogen in the root nodules contributes up to 70% of the total nitrogen uptake by the plant (Weber, 1966).

Biological nitrogen fixation (BNF) offers an economically attractive and ecologically sound means of improving crop yield, reducing external N inputs and enhancing the quality of soil resources which consequently reduce the dependence on mineral fertilizers that could be costly and unavailable to smallholder farmers. Leguminous crops such as soybean
hold promise in this regard. Solomon et al., (2012) reported that, legumes including soybean can obtain between 50 % and 80 % of their nitrogen concentration requirements through BNF.

1.2 Problem statement

Despite the numerous benefits of the soybean, the grain yield per unit area is low in Ghana, being an average of 1.3 tonnes per hectare (Tweneboah, 2000). Argentina, the USA and Brazil produce 3.32, 2.31 and 2.30 tonnes per hectare on the average respectively (Norman et al., 1995). This low yield of soybean has been associated with poor soil fertility and inappropriate soil bacterium strains for roots nodulation (Singh and Rachie, 1987). Non-availability of *Bradyrhizobium* spp. and deficiency of phosphorous, potassium, molybdenum and sulphur in the soil are some of the contributing factors to the low yield of soybean (Singh and Rachie, 1987). Low fertility status of most of the cultivated tropical soils has been identified as a major factor causing low crop yield (Shiferaw et al., 2004; Byerlee, 2007). Inherently poor or nutrient depleted soils are characterized by low soil organic matter, unavailable phosphorus and total nitrogen especially in the savannah and transition zones of Ghana (FAO, 2005).

Inherent poor and declining soil fertility, soil acidity, poor management practices and low agricultural input use are the major causes of low soybean yields (Kanyanjua et al., 2002; Kimani et al., 2004; Okalebo et al., 2006; Njeru, 2009). Effects of soil acidity are many; the most important being the retardation of plant growth through toxicity of Aluminium (Al) and Hydrogen (H) ions, unavailability of other plant nutrients, mainly Nitrogen and Phosphorus, and reduction of microbial activity in the soil (Ano and Ubochi, 2007). Reduced availability of Nitrogen (N) and Phosphorus (P) in predominantly acidic soils is
responsible for reduced soybean performance through reduced photosynthesis and early root development, low microbial activity and poor nitrogen fixation, leading to low yields (Amba et al., 2011; Kamara et al., 2007).

Soil acidity has long been known to induce N deficiency in legumes if the crop depended solely on symbiotic N\textsubscript{2} fixation. Aluminium and manganese toxicity, as well as calcium and phosphorus deficiency in acid soils, inhibit Rhizobium growth and root infection resulting in symbiotic failure (Munns, 1979; Negi et al., 2006; Bakker et al., 1999; Zahran, 1999; Keyser and Bambara and Ndakidemi, 2010).

1.3 Justification of the study

Soil pH can significantly influence plant growth by affecting the composition of the soil solution and the availability of essential and non–essential elements (Dayton, 1991). The addition of lime to acidic solution produces Ca2+ which is essential to plant growth and when lime is applied to the soil, it can raise the pH of the soil at which bacteria species can act best (Guo et al., 2009, Negi, 2006). As such, economically feasible and sustainable agriculture production in poor soil as a result of soil pH, liming is required. This will increase the soil pH and provide Ca2+, Mg2+ and decrease aluminium (Al3+) and iron (Fe3+) toxicity thereby stimulating microorganism activity and crop growth (Kanyanjua et al., 2002; Kisinyo et al., 2012). Therefore, there is the need for the evaluation of liming, inoculation and phosphorus fertilizer on growth, nodulation, nitrogen fixation and grain yield of soybean.
1.4 **Objectives of the study**

The objectives of the study were:

1. To evaluate the effect of liming on growth, nodulation, nitrogen content and grain yield of soybean.
2. To assess the effect of soil amendments (phosphorus, inoculation and phosphorus-inoculation) on growth, nodulation, nitrogen content and grain yield of soybean.
3. To evaluate the combined effect of liming (CaCO$_3$, oil palm leaf ash and control) and soil amendment (phosphorus, inoculation and phosphorus-inoculation) on growth, nodulation, nitrogen content and grain yield of soybean.
CHAPTER TWO

2.0 Literature review

2.1 Fertility of tropical soils

Soil is a natural medium for plant growth and the most valuable natural resource a nation possesses (Obeng, 2000). Tropical soils vary from young volcanic or alluvial soils to some of the oldest (Oxisols, Ultisols and less leached Alfisols), most highly weathered and leached soils in the world (Giller, 2001). The highly weathered and leached soils which are predominant (covering half of the land area) resulted from various parent materials, high temperatures and rainfall. These soils are highly susceptible to degradation resulting in low fertility that poses serious constraints to poverty alleviation and sustainable food security in many parts of the tropics. In the face of increasing population growth and concomitant decline in the area of land available for expansion of agriculture, many developing countries are confronted with diverse challenges of increasing agricultural production (FAO, 2002).

The previous act of leaving a land to fallow for 10-12 years can no longer be accommodated as a result of this population pressure. Sadly, there is scarcely any productivity-enhancing investment accompanying increase in land use intensity. The extent and severity of land degradation in developing countries is not sufficiently known. Oldeman (1994) reports that, an assessment carried out by the Global Assessment of soil Degradation (GLASOD), indicates that in Africa about 65 % of agricultural lands are exposed to some degree (slight to extreme) of degradation.

Soil erosion by water and wind, depletion of soil nutrients, salinity, waterlogging, acidification and deforestation are the major agents of land degradation. The impact of such
soil degradation is difficult to reverse, depending on the severity of the effect on the soil (Salako, 2001). The high level of nutrient depletion and soil degradation in many smallholder systems, coupled with the high fertilizer prices that limit farmer's capacity to replenish soil fertility necessitate alternative nutrient management systems for the rehabilitation and reversal of soil degradation. In the case of Ghana, soils develop from highly weathered parent materials (FAO, 2005). Alluvial and eroded shallow soils are common to all agro-ecological zones, most of which are inherently infertile, or infertile as a result of human activities (MOFA, 1998).

2.2 **Soils of northern Ghana**

Soil is a natural medium for plant growth and the most valuable natural resource a nation possesses (Obeng, 2000). There are, however, different types of soils with different suitability rating for the healthy growth of plants. Fertile soil is essential for producing healthy plants with high yield and nutritious products. The physical and chemical characteristics of the soil are significant indicators of soil quality that can directly or indirectly influence the healthy growth of plants and the quality of its product (Peters, 2002). The type of soil in any locality depends on several factors. These includes, the parent rock, the climate, the relief, the drainage, the living organisms on the land and the time taken for a particular parent material to break down into soil (Obeng, 2000). Such is the importance of the climate among these factors in Ghana, soil zoning is put into two based on the two major distinct vegetation zones; namely forest and savannah of which Northern region of Ghana falls within the savannah zone (Obeng, 2000).

The soils of Ghana are developed from highly weathered parent material (FAO, 2005). Alluvial and eroded shallow soils are common to all agro-ecological zones. Most soils are
inherently infertile, or infertile as a result of human activities (Oppong-Anane, 2006). The Northern region is covered by a tropical climate marked by the alternation of dry and rainy season. It experiences a mono-modal rainfall pattern, beginning in May and ending in October, with an average annual rainfall of 750 to 1050 mm. The dry season is between November and April. Temperatures are high almost throughout the year with the highest of 37°C in March and April. However, lower temperatures are experienced between November and February, the harmattan period.

Geologically, the region is characterized with sedimentary rocks predominantly the voltaian sandstones, shales and mudstones. The soils derived from the above parent materials range from ground water laterite, savannah ochrosols, sandy soils, alluvial soils and clay. These types of soils vary in terms of physical and chemical composition and therefore influence the quality of plant product separately.

In the Northern Ghana Guinea savanna, the soils have low accumulation of organic matter in the surface horizon owing to high temperatures, which results in rapid rate of decomposition. Thus, the soils are notoriously low in nutrient status with phosphorus and nitrogen being particularly deficient in almost all soils (Jones and Wild, 1975). The soils in northern Ghana are described generally as savannah ochrosols and groundwater laterites. They are formed over granite and Voltaian shales (Abubakari et al., 2012). Over the years, the physical, biological and chemical compositions of the soil within the three Northern Regions have experienced drastic changes. This is due to diverse and changing land uses that characterized the savannah landscape (Abubakari et al., 2012).

The northern half of Ghana is dominated by Luvisols which are described as having a mixed mineralogy, high nutrient content and good drainage (Bridges, 1997). The percent
organic matter and nitrogen are particularly low in the Savannah and transition zones (FAO, 2005). It is generally recognized that most of Ghana’s soils have low fertility with the following range of nutrients pH (4.5 – 6.7), organic matter (0.6 – 2.0 %), total nitrogen (0.02 – 0.05 %), available P (2.5 – 10.0 mg kg$^{-1}$soil) and available Ca (mg per soil) (AQUASTAT; FAO, 2005), which are responsible for low food production. In order to sustain soil and crop productivity, it is necessary to explore alternative soil fertility replenishing strategies different from what small-scale farmers are used to, which will be effective and affordable to support improved livelihoods. Table 1 provides information on soil characteristics by administrative regions.
Table 1: Average soil fertility status of seven administrative regions of Ghana.

<table>
<thead>
<tr>
<th>REGION</th>
<th>SOIL PROPERTIES</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>pH</td>
</tr>
<tr>
<td>Greater Accra</td>
<td>5.4</td>
</tr>
<tr>
<td>Western</td>
<td>3.8</td>
</tr>
<tr>
<td>Ashanti</td>
<td>4.3</td>
</tr>
<tr>
<td>Brong Ahafo</td>
<td>3.5</td>
</tr>
<tr>
<td>Northern</td>
<td>4.5</td>
</tr>
<tr>
<td>Upper West</td>
<td>6.0</td>
</tr>
<tr>
<td>Upper East</td>
<td>5.1</td>
</tr>
</tbody>
</table>

Source: Data from FAO, 2005.

2.3 Importance of soybean

Soybean, a native crop of China, is much widely spread as it is found in nearly every country in Sub-Saharan Africa where Nigeria is the largest producer. The crop is a drought tolerant leguminous grain that grows in areas where maize and common beans are grown. It grows to a height of 60 – 120 cm, maturing in 3 to 6 months depending on the variety, climate, and location (Mathu et al., 2010). Depending on the variety, the crop can be grown from 0 – 2,200 m altitude and under rainfall ranging from 300 to 1,200 mm (Mathu et al.,
Soybean grows well in both sandy and heavy textured soils over a wide range of soil pH 5.5 – 8.5 (Nieuwenhuis & Nieuwelink, 2002; Kamara et al., 2007). Soybean has a high commercial value and high concentration of protein (about 40 %), calcium, phosphorus, fiber, and in addition it is cholesterol free (Greenberg & Hartung, 1998; Imas & Magen, 2007).

Moreover, it provides food, cash and animal feed; and like other leguminous crops, soybean has impact on the soil improvement whereby the canopies cover the soil and protect it from recurrent erosion, and add nitrogen from the atmosphere through biological N fixation (Nieuwenhuis & Nieuwelink, 2002; Imas & Magen, 2007). Soybean contributes to sustainable cropping systems by improving soil fertility through biological nitrogen fixation. It also provides useful crop residues for animal feed or left in the field to decompose, thereby increasing the organic matter content of the soil (Soko, 2000). Most African countries, including Ghana, can reduce expenditures on inorganic fertilizers through exploitation of atmospheric BNF (Giller, 2001). This is particularly important for resource poor farmers whose economics of inorganic fertilizer use is not attractive, a situation worsened by the escalating prices of fertilizers.

Most grain legumes including soybean are relatively high value crops compared to most cereals, such as maize and rice. Thus, households that incorporate soybean in their cropping systems can generate more cash income from sales of the crop (Chirwa, 2007). Further, there are potential markets in the region and beyond for soybean. Therefore, the crop can greatly contribute to the economy’s narrow foreign exchange earnings base if its production can be increased, especially under smallholder farm conditions (Chirwa, 2007).
2.4 Uses of soybean

Soybeans have many industrial uses and importance for human use. The beans has an oil content of about 20 %, protein content of 40-45 % and carbohydrate of 30 % and total sugar of about 10 %. The bean is also a good source of calcium, phosphorus, copper, potassium, magnesium and thiamine. In the US, the major biofuel for transportation is soybean biodiesel, which displaces petroleum and diesel. Soybean has a great potential for the alleviation of Protein Energy Malnutrition (PEM) in Ghana because animal sources of proteins are scarce and expensive. In Ghana, soybean is used in the preparation of soy paste, soy milk, soy custard, soy kebab, soy cheese, soy palaver sauce and many others (MoFA, 2010).

According to Dugje et al (2009), soybean is more protein-rich than any of the common vegetable or legume food sources in Africa. It has an average protein content of 40 %. The seeds also contain about 20 % oil on a dry matter basis, and this is 85 % unsaturated and cholesterol-free. Borget (1992) has stated that, soybean contributes to the feeding of both humans and domestic animals. And that, it has various nutritional and medicinal properties as well as industrial and commercial uses; and agronomic values such as soil conservation, green manure, compost and nitrogen fixation. Soybean can be cooked and eaten as a vegetable as well as processed into soy oil, soy milk, soy yogurt, soy flour, tofu and tempeh (Rienke and Joke, 2005; MoFA and CSIR, 2005).

Rienke and Joke (2005) reported that, soybean contains a lot of high-quality protein and is an important source of carbohydrates, oil, vitamins and minerals. Research has shown that, the quantity of proteins in one kilogram of soybean is equivalent to the quantity of proteins in three kilograms of meat or 60 eggs or 10 litres of milk. And comparatively, the cost of
buying one kilogram of soybean is much less than buying a similar quantity of meat or eggs (Ngeze, 1993). It can therefore be an excellent substitute for meat in developing countries, where animal protein-rich foods such as meat, fish, eggs and milk are often scarce and expensive for resource poor families to afford.

Soybean oil is also rich and highly digestible, odourless and colourless, which does not coalesce easily. It is one of the most common vegetable cooking oil used in food processing industries, all over the world. And it is also heavily used in industries, especially in the manufacture of paint, soap, typewriter ink, plastic products, glycerine and enamels (Rienke and Joke, 2005; Ngeze, 1993 and Wikipedia, 2009). Soybean is one of the most important feed stuffs for livestock either in form of forage (as hay and silage) or soybean meal (IITA, 1990). The cake obtained from soybean after oil extraction is also an important source of protein feed for livestock such as poultry, pig and fish. The expansion of soybean production has led to significant growth of the poultry, pig and fish farming (Abbey et al., 2001; Ngeze, 1993; MoFA and CSIR, 2005). The haulms, after extraction of seed, also provide good feed for sheep and goats (Dugje et al., 2009).

Soybean is said to contain some anti-nutritional substances that reduce the nutritional value of the beans and are dangerous to health and therefore, need to be removed before they can be eaten. This is not a problem since these substances can be removed by simply soaking and or ‘wet’ heating the beans; leaving a valuable product that is not harmful to humans (Rienke and Joke, 2005; Ngeze, 1993). Soybean is also reported to have many health benefits. It has been reported that, regular intake of soy foods may help to prevent hormone-related cancers such as breast cancer, prostate cancer and colon cancer (Wikipedia, 2009). It also relieves menopausal symptoms, due to the oestrogen like effect of soy is flavones.
Research also suggest that, regular ingestion of soy products reduces the rate of cardiovascular diseases, by reducing total cholesterol, low density lipoprotein cholesterol, and preventing plaque build-up in arteries which could lead to stroke or heart attack (The Mirror, 2008). The high quality protein, low cholesterol oil and other nutritional values are beneficial in the treatment of nutritional diseases in children (MoFA and CSIR, 2005), diabetics and also very important protein for vegans (Wikipedia, 2009).

2.5 Soybean as a protein supplement

Mahamood *et al* (2009), reported that, soybean is a crop which has been proposed for the removal of the acute shortage of protein and oil worldwide. Soybean has a lot of high quality protein, Uwaegbute (1992) reported that, soybean is one of the cheapest foods available to man when judged by the amount of protein, mineral, vitamins and energy obtainable per unit cost, and its high protein content makes it a very useful food for curing protein energy malnutrition. The grain legume proteins are usually the least expensive source for both rural and urban population, and nutritionally, the protein of soybean is similar to that of animal protein.

The amino acid analysis of soy bean protein and Casein are remarkably similar (Masefield, 1977). Norman (1978) reported that, the thought for utilization of soybean protein products in human foods has increased dramatically because of the population pressure on the food supply and the quest for alternative source of protein. This is more so in developing countries where there is great shortage of animal protein leading to a lot of nutritional hazards. A great effort has to be made to enrich some foods with soybean. The proteins of meat, poultry, fish, milk and eggs are very expensive compared with vegetable proteins, and soybean protein is superior to all other proposed protein supplement (Anazonwu,
Norman (1978) also reported that, the protein content of soybean (40 %) is considered higher than dairy products of 26.7 %, as shown in table 2. The soybean by virtue of its high protein content and oil contents is valued as a high energy protein source.

Table 2: Nutrient Content (%) in Soybean compared to other food stuffs per 100gm

<table>
<thead>
<tr>
<th>Food type</th>
<th>Water</th>
<th>Energy</th>
<th>Protein</th>
<th>Oil</th>
<th>Calcium</th>
<th>Iron</th>
</tr>
</thead>
<tbody>
<tr>
<td>Common beans</td>
<td>10</td>
<td>334</td>
<td>25.0</td>
<td>1.7</td>
<td>110</td>
<td>8.0</td>
</tr>
<tr>
<td>Peas</td>
<td>10</td>
<td>337</td>
<td>25.0</td>
<td>1.0</td>
<td>70</td>
<td>5.0</td>
</tr>
<tr>
<td>Pigeon peas</td>
<td>10</td>
<td>328</td>
<td>26.0</td>
<td>2.0</td>
<td>100</td>
<td>5.0</td>
</tr>
<tr>
<td>Soybean</td>
<td>8</td>
<td>382</td>
<td>40.0</td>
<td>20.0</td>
<td>200</td>
<td>7.0</td>
</tr>
<tr>
<td>Meat</td>
<td>66</td>
<td>202</td>
<td>20.0</td>
<td>14.0</td>
<td>10</td>
<td>3.0</td>
</tr>
<tr>
<td>Milk</td>
<td>74</td>
<td>140</td>
<td>7.0</td>
<td>8.0</td>
<td>260</td>
<td>0.2</td>
</tr>
<tr>
<td>Egg</td>
<td>74</td>
<td>158</td>
<td>13.0</td>
<td>11.5</td>
<td>55</td>
<td>2.0</td>
</tr>
<tr>
<td>Ground Nuts</td>
<td>6</td>
<td>579</td>
<td>27.0</td>
<td>45.0</td>
<td>50</td>
<td>2.5</td>
</tr>
<tr>
<td>Wheat flour</td>
<td>13</td>
<td>346</td>
<td>11.0</td>
<td>1.6</td>
<td>20</td>
<td>2.5</td>
</tr>
<tr>
<td>Finger millet flour</td>
<td>12</td>
<td>332</td>
<td>5.5</td>
<td>0.8</td>
<td>350</td>
<td>5.0</td>
</tr>
<tr>
<td>Maize flour</td>
<td>12</td>
<td>362</td>
<td>9.5</td>
<td>4.0</td>
<td>12</td>
<td>2.5</td>
</tr>
<tr>
<td>Cassava flour</td>
<td>12</td>
<td>342</td>
<td>1.5</td>
<td>0.2</td>
<td>55</td>
<td>2.0</td>
</tr>
<tr>
<td>Plantain (banana)</td>
<td>67</td>
<td>128</td>
<td>1.5</td>
<td>0.0</td>
<td>7</td>
<td>0.5</td>
</tr>
<tr>
<td>Round potatoes</td>
<td>80</td>
<td>75</td>
<td>2.0</td>
<td>0.0</td>
<td>10</td>
<td>0.7</td>
</tr>
<tr>
<td>Sweet potatoes</td>
<td>70</td>
<td>114</td>
<td>1.5</td>
<td>0.0</td>
<td>25</td>
<td>1.0</td>
</tr>
</tbody>
</table>
Source: Malema, 2005 (Soybean Production and Utilization in Tanzania).

2.6 Botany and taxonomy of soybean

Soybean (*Glycine max* (L.) Merrill) is a pea plant belonging to the botanical family leguminosae. Like all other peas, beans, lentils and peanuts, which include some 500 genera and more than 12,000 species, it belongs to the subfamily papilionideae (Shurtleff and Aoyagi 2007). The genus *Glycine*, presently consist of two subgenera, *Glycine* consisting of seven perennial wild species confined to Southeastern Asia; and *soja*, comprising the domesticated and commercially important soybean, *Glycine max* and its wild ancestor, *Glycine soja*. Both are annuals and grow in the tropical, subtropical and temperate climates. They have 40 chromosomes (2n = 2x = 40) and are self-fertile species with less than 1 % out-crossing (Norman *et al.*, 1995; Shurtleff and Aoyagi2007; IITA,2009).

The genus name *Glycine* was originally proposed by Linnaeus in his first edition of Genera Plantarum; with the cultivated species first appearing in the edition, ‘Species Plantarum’, under the name *Phaseolus max* L. The combination, *Glycine max* (L.) Merr) was proposed by Merrill in 1917, and has since become the valid name for this useful plant (Wikipedia, 2009).

According to recent taxonomical classification, soybean belongs to the genus *Glycine*, which has two subgenera: *soja* and *Glycine*. Cultivated soybean (*G. max*) and its wild annual relative *G. Soja* belong to the subgenus *soja*. The subgenus *Glycine* contains 16 wild perennial species, mostly found in Australia. All of these species generally carry 2n = 40 chromosomes, except for *G. hirticaulis, G. tabacina* and *G. Tomentella*. Each subgenus has a different centre of diversity.
The subgenus *soja* is most diverse in the eastern half of north China, whereas maximum diversity for the subgenus *Glycine* occurs in Australia. Over the last two decades, a large germplasm of 16 perennial species of *Glycine* has been assembled by the US Department of Agriculture (USDA) (Wikipedia, 2009).

2.7 Origin and distribution

The first domestication of soybean was recorded in North China around the 11th century BC (Hymowitz and Newell, 1981). Soybean is native to Eastern Asia, mainly China, Korea and Japan, from where it spread to Europe and America and other parts of the world in the 18th century (Ngeze, 1993). Evidence in Chinese history indicates its existence more than 5,000 years ago, being used as food and a component of drugs (Norman *et al*., 1995). Some researchers have suggested Australia and Eastern Africa as other possible centres of origin of the genus *Glycine* (Addo-Quaye *et al*., 1993). It is widely grown on large scale in both the temperate and tropical regions such as China, Thailand, Indonesia, Brazil, the USA and Japan; where it has become a major agricultural crop and a significant export commodity (Evans, 1996).

Soybean was first introduced to Africa in the early 19th century, through Southern Africa (Ngeze, 1993) and is now widespread across the continent (Wikipedia, 2009). However, Shurtleff and Aoyagi (2007) have stated that, it might have been introduced at an earlier date in East Africa, since that region had long traded with the Chinese. The same report indicates that, soybean has been under cultivation in Tanzania in 1907 and Malawi in 1909. In Ghana, the Portuguese missionaries were the first to introduce the soybean in 1909. This early introduction did not flourish because of the temperate origin of the crop (Mercer Quarshie and Nsowah, 1975). However, serious attempts to establish the production of the
crop in Ghana started in the early 1970s. This was as a result of collaborative breeding efforts of Ghana’s Ministry of Food and Agriculture (MoFA) and the International Institute of Tropical Agriculture (IITA) (Tweneboah, 2000). The crop is a drought tolerant leguminous grain that grows in areas where maize and common beans are grown. It grows to a height of 60 – 120 cm, maturing in 3 to 6 months depending on the variety, climate, and location (Mathu et al., 2010). Depending on the variety, the crop can be grown from 0 – 2,200 m altitude and under rainfall ranging from 300 to 1,200 mm (Mathu et al., 2010). Soybean grows well in both sandy and heavy textured soils over a wide range of soil pH 5.5-8.5 (Nieuwenhuis and Nieuwelink, 2002; Kamara et al., 2007).

2.8 World production of soybean

Soybean production is increasing rapidly all over the world as a result of the numerous benefits derived from the crop. Current world production of soybean is 220 million metric tonnes of grain per annum, of which the seven leading producers are the USA 32 %, Brazil 28 %, Argentina 21 %, China 7 %, India 4 %, Paraguay 3 %, Canada 1 % and others 4 % (USDA, 2007). According to FAO data for 2005, total land area under soybean cultivation in the world was 95.2 million hectares per annum and total production was 212.6 million tonnes annually. The three major producing countries were USA (29 million hectares), Brazil (23 million hectares), and Argentina (14 million hectares) (IITA, 2009).

Masuda and Goldsmith (2008), also gave the breakdown of world soybean production of 94 million hectares worldwide as follows: U.S.A. accounted for over 30 million, Brazil for almost 22 million, Argentina for 15 million, China for 9.2 million, India for 8.2 million, Paraguay for 2.2 million and Canada for 1 million hectares respectively. In relation to Sub-Saharan Africa, the same source showed that, soybean was grown on an average of 1.16
million hectares with an average production of 1.26 million tonnes of grain in 2005. African countries with the largest area of production were Nigeria (601 000 hectares), South Africa (150 000 hectares), Uganda (144 000 hectares), Malawi (68 000 hectares), and Zimbabwe (61 000 ha).

Soybean was introduced in Ghana in 1910 (Plahar, 2006) and was used by local farmers in the northern sector. The northern parts of the country lead soybean production in Ghana. Mean acreage under soybean cultivation per farmer in the northern part of Ghana was 3.4 acres in 2006 with individual farm size holdings ranging from 0.5 acre to 80 acres. In 2006, the southern sector production was still comparatively at the rudimentary stages except for Ejura Farms of about 300 acres and a few satellite farmers (Plahar, 2006). The average soybean yields for northern Ghana (Northern, Upper West and Upper East regions) was about 1.5 t / ha on the farmers’ field compared to that of USA which was 4.6 t / ha (Lawson et al., 2008).

2.9 Morphological descriptions of soybean

Soybean is an annual, erect hairy herbaceous plant, ranging in height of between 30 and 183 cm, depending on the genotype (Ngeze, 1993). Some genotypes have prostrate growth, not higher than 20cm or grow up to two meters high (Wikipedia, 2009). There are two types of growth habit of the soybean: determinate and indeterminate types with six approved varieties grown in Ghana (Ngeze, 1993; CSIR and MoFA, 2005). The determinate genotypes grow shorter and produce fewer leaves, but produce comparatively more pods, while the indeterminate types grow taller, produce more leaves and more pods right from the stem to shoot. Also, the flowers are small, inconspicuous and self-fertile; borne in the axils of the leaves and are white, pink or purple (Ngeze, 1993).
The stem, leaves and pods are covered with fine brown or gray hairs. The leaves are trifoliate, having three to four leaflets per leaf. The fruit is a hairy pod that grows in clusters of three to five, each of which is five to eight centimetres long and usually contains two to four seeds (Rienke and Joke, 2005). Soybean seeds occur in various sizes, and in many, the seed coat colour ranges from cream, black, brown, yellow to mottle. The hull of the mature bean is hard, water resistant and protects the cotyledons and hypocotyls from damage (Wikipedia 2009; Borget, 1992).

Gary and Dale, (1997) have described soybean growth and development in two main stages: the vegetative stage and the reproductive stage. The vegetative stage starts with the emergence of seedlings, unfolding of unifoliate leaves, through to fully developed trifoliate leaves, nodes formation on main stem, nodulation and the formation of branches. While the reproductive stage begins with flower bud formation, through full bloom flowering, pod formation, pod filling to full maturity. Leaves fall before the seeds are mature (Infonet-biovision, 2012). It grows to a height of 60-120 cm, it’s well adapted to diverse environments and matures in 3-6 months depending on variety, climate and location. Altitude influences temperature that in turn affects the initiation of flowering and maturity in soybean. It improves soil fertility by fixing nitrogen from the atmosphere (Kasasa et al., 2000; Sanginga et al., 2003).

2.10 Soil and climatic requirements

2.10.1 Soil requirements

Soybean is tolerant to a wide range of soil conditions but does best on warm, moist, and well drained fertile loamy soils, that provide adequate nutrients and good contact between the seed and soil for rapid germination and growth (Hans et al., 1997; Addo-Quaye et al.,
Ngeze (1993) stated that, soybean does well in fertile sandy soils with pH of between 5.5 and 7.0, and that the crop can tolerate acidic soils than other legumes but does not grow well in water logged, alkaline and saline soils.

Maintaining soil pH between 5.5 and 7.0 enhances the availability of nutrients such as nitrogen and phosphorus, microbial breakdown of crop residues and symbiotic nitrogen fixation (Ferguson et al., 2006). Rienke and Joke (2005), reported high yields in loamy textured soil, and that if the seeds are able to germinate, they grow better in clayey soils.

2.10.2 Climatic requirements

Soybean grows well in the tropical, subtropical and temperate climates (IITA, 2009). One of the important challenges facing crop physiologists and agronomists is to understand and overcome the major abiotic stresses in agriculture which reduces crop productivity and yield (Habibpor et al., 2011). Interest in crop response to environmental stresses has increased greatly in recent years because of severe losses that result from drought, heat and cold stress (Diab et al., 2007).

Leguminous plants in association with Rhizobium species have the potential to fix large amounts of atmospheric N which contributes to the soil N pool provided that the N fixation is not restricted by other environmental or microbial factors (Achakzai et al., 2002). Rainfall, drought, salinity, acidity, low P and the presence of toxic ions hinders the establishment of symbiotic N fixation (Graham, 1992; Rajput et al., 2001).

The two important climatic determinants affecting BNF are temperature and light. Extreme temperatures affect N₂ fixation adversely because N₂ fixation is an enzymatic process. However, there are differences between symbiotic systems in their ability to tolerate high (˃ 35°C) and low (˂ 25°C) temperatures (Brockwell et al., 1991). The availability of light
regulates photosynthesis, upon which BNF depends. This is demonstrated by diurnal variations in nitrogenase activity. Very few plants like cowpea can grow and fix N$_2$ under shade (Hungria and Vargas, 2000).

Yield of a soybean crop is a function of light interception, dry matter production, and partition of dry matter into the plant’s seed. Optimal crop growth rate is achieved when leaf area index is large enough to intercept 95% of the sun light (Board, 2000). It was predicated that, 19 to 25 % yield loss was observed due to 44-56% shading of the crop by the weeds. Drought reduces the number of Rhizobia in soils, and inhibits nodulation and N$_2$ fixation (Napoles et al., 2009). Prolonged drought will promote nodule decay (Benjamin and Nielsen, 2006). Reports indicate that, drought severely inhibits nitrogenase activity (Streeter, 2003), N$_2$ fixation and nodulation (Pimratch et al., 2008). As with other grain legumes, soybean is very sensitive to drought stress which leads to reduced yield and seed quality.

Sadeghipou and Abbasi (2012) reported that, water stress decreased number of pods per plant, number of seeds per pod, 100seed weight and seed yield of soybean. Water stress increases the abortion of flowers and pods but also decreases fertilization values, photosynthates mobilization to seeds and seed filling period. The decrease in yield and yield components of soybean, due to water stress, has also been reported by other researchers (Mirakhorri et al., 2009; Masoumi et al., 2011; Shafii et al., 2011). In soybean, drought not only results in losses in CO$_2$ accumulation and leaf area development but also its symbiotic N$_2$ fixation is especially vulnerable to drought. With declining soil water content, soybean has decreased N$_2$ fixation rates in advance of declines of other physiological processes. This means a decrease in N availability to support cell and tissue
development throughout the plant (Sinclair et al., 2007). Decrease in N\textsubscript{2} fixation with soil drying causes yield reductions due to inadequate N for protein production which is the critical seed product (Sinclair et al., 2007).

Rainfall, in terms of both quantity and distribution, affects the normal functioning of the crop as well as of the microbes. Heavy downpours resulting in waterlogging and long dry spells leading to moisture stress equally influence the efficiency of BNF activity and thus affect the amount of nitrogen fixed (Jung et al., 2008; Youn et al., 2008). The detrimental effect of waterlogging is usually attributed to inadequate oxygen supply to sustain various root metabolisms for various crops including soybean. Decrease O\textsubscript{2} concentration in the rhizosphere during flooding affects nitrate assimilation.

Firstly, nitrate could be used as an alternative to O\textsubscript{2} as an electron acceptor in hypoxic roots. Secondly, respiratory energy demands for N\textsubscript{2} fixation and assimilation is higher than those for nitrate uptake and assimilation (Bacanamwo and Purcell, 1999). Consequently, hypoxic roots of plants dependent upon N\textsubscript{2} fixation are strongly affected. Reyna et al., (2003) reported that, waterlogging reduced nitrogenase activity and irreversibly altered ultrastructures of cells in soybean root nodules. Normally, soybeans often do not fully recover from flooding injury and can reduce soybean yield by 17 to 43 % at the vegetative growth stage and 50 to 56 % at the reproductive stage (Oosterhuis et al., 1990).

Yield losses are the result of reduced root growth, shoot growth, nodulation, nitrogen fixation, photosynthesis, biomass accumulation, stomatal conductance, and plant death due to diseases and physiological stress (vanToai et al., 2003).
2.10.3 Moisture requirement of soybean

Soybean requires optimum moisture for seeds to germinate and grow well. The optimum rainfall amount is between 350 and 750mm, well distributed throughout the growth cycle (Ngeze, 1993). Rienke and Joke (2005) and Addo-Quaye et al (1993), have described two periods as being critical for soybean moisture requirement; from sowing to germination and flowering, and pod filling periods. And during germination, the soil needs to be between 50 % and 85 % saturated with water, as the seed absorbs 50 % of its weight in water before it can germinate.

The amount of water needs increases, and peaks up at the vegetative stage, and then decreases to reproductive maturity. Large variation in the amount and distribution of soil water limits soybean yield. According to Bohnert et al (1995), there are two major roles of water in plants, as a solvent and transport medium of plant nutrients, and as an electron donor in the photosynthetic reaction processes.

Troedson et al (1985), reported that, soybean is quite susceptible to water stress, and usually respond to frequent watering by substantially increasing vegetative growth and yield. Jones and Jones (1989) defined water stress as the lack of the amount of soil water needed for plant growth and development, and which in certain cells of the plant may affect various metabolic processes. Direct impacts of drought stress to the physiological development of soybean depend on its water use efficiency (Earl, 2002).

In soybean management, water use efficiency is an important physiological characteristic related to the ability of plants to cope with water stress. According to Passioura (1997), grain yield is a function of the amount of water transpired, water use efficiency and harvest index. And soybean, as a C3 plant, is less efficient in water use due to high
evapotranspiration and low photosynthetic rates. Pandy et al (1984), found that, increasing drought stress progressively reduced leaf area, leaf area duration, crop growth rate and shoot dry matter; hence, limits soybean yield.

Drought stress, during flowering and early pod formation causes greatest reduction in number of pods and seeds at harvest (Sionit and Kramer, 1977). Low soil moisture with high plant population may cause yield to decrease because of drought stress (Gary and Dale, 1997).

2.10.4 Temperature and photoperiod

Soybean is a legume species that grows well in the tropical, subtropical and temperate climates (IITA, 2007). Plant breeders have argued that, within the soybean species, there are varieties which react differently to photoperiod, and classified them as long day, short day and day neutral plants (Borget, 1992).

Rienke and Joke (2005), described soybean as being typically a short day plant, physiologically adapted to temperate climatic conditions. However, some have been adapted to the hot, humid, tropical climate. In the tropics, the growth duration of adapted genotypes is commonly 90 - 110 days, and up to 140 days for the late maturing ones (Osafo, 1997). The relatively short growth duration is primarily due to sensitivity to the day length. This affects the extent of vegetative growth, flower induction, production of viable pollen, length of flowering, pod filling and maturity characteristics (Norman et al., 1995). Most legumes require an optimum temperature of between 17.5° C and 27.5 ° C for development (Ngeze, 1993). For soybean, the minimum temperature at which it develops is 10 ° C, the optimum being 22° C and the maximum about 40° C. The seeds germinate well at temperatures between 15° C and 40° C, but the optimum is about 30° C (Rienke and Joke,
2005). Addo-Quaye et al (1993), have suggested the optimum temperature for growth as between 23-25 °C.

2.11 Agronomic practices in soybean cultivation

2.11.1 Sowing and planting

The time for cultivation of soybean is dependent on the type of agro - ecological zone. Typically, in the northern region of Ghana, it has been suggested that the best time for soybean cultivation is mid - June to early July (SARI, 2005). Soybean yield depends on several factors e.g. seed germination and seedling vigour which will be influenced by the conditions necessary for germination such as air, water and warmth. Crop establishment is another problem and is often cited as a production problem for soybean in both arid and semi-arid areas of Central and West Africa (ICRISAT, 1984).

2.11.2 Fertilizer application

Soybean plant has a nutrient dense, high protein seed, and therefore, requires high amount of nutrients for its growth (Lamond and Wesley, 2001). It is a legume that can meet its nitrogen needs by symbiotic relationship with nitrogen fixing bacteria of the species Bradyrhizobia japonicum from atmospheric nitrogen (Sarkodie-Addo et al., 2006). And generally, the plant will not benefit from supplemental nitrogen fertilizer application, where there are indigenous populations of the appropriate Bradyrhizobia bacteria strains that cause effective nodulation of the roots and nitrogen fixation (Darryl et al., 2004).

Gary and Dale (1997) have stated that, nitrogen fertilizer application circumvents the benefit of Rhizobia bacteria, as the bacteria will not convert atmospheric nitrogen when soil nitrogen is readily available to the plant. However, where soybean have not been grown
recently, inoculation of the seed with specific *Bradyrhizobia* strains is essential for effective nitrogen fixation (Darryl *et al*., 2004).

The number of days to flowering glasshouse experiment was reported by Tairo and Ndakidemi (2013) that, flowering of soybeans starts at 41-44 days after planting, followed by pod formation at 46-49 days. According to them, field experiment gave 46-49 days and 51-54 days for flowering and pod formation respectively. Tairo and Ndakidemi (2013) indicated that, rhizobial inoculation increased plant height and the number of leaves per plant significantly in both glasshouse and field experiment. Dry shoot weight, number of pods per plant and grain yield of soybean increased when inoculation and phosphorus application were done (Tahir *et al*., 2009).

Matured plants beyond 45 days, the number of leaves declined significantly for all varieties and at all levels of P application during the major season and the number of leaves increased with age of the plant during the minor season (Karikari and Arkorful, 2015). Ayodele and Oso (2014) observed that, P application increased the number of leaves of cowpea. The availability of P can increase the intensity of nodulation and nitrogen fixation which could result to higher yield of the dry matter and seed yield of crop (Singh *et al*., 2011). Malik *et al* (2006)., reported that, soybean seed inoculation with *Rhizobium* in combination with phosphorus application at 90 kg per hectare, performed better in yield under irrigated conditions.

Soybean can produce maximum seed yield with relatively low levels of available phosphorus in the soil. Phosphorus application is not likely to increase seed yield at soil phosphate concentrations above 12ppm P (Bray-1 test). Also, most soils seldom need potassium fertilizer for soybean production, since K levels are generally high in both
surface soil and subsoil. Potassium fertilizer is not required if soil test shows more than 124ppm (Ferguson et al., 2006).

According to Tahir et al.(2009), the number of nodules increased in soybean plants treated with inoculum, phosphorus and phosphorus-inoculum from 73 to 125, 93 and 140 respectively. Plant height increased from 64.69 to 88.16 phosphorus-inoculated plants, 64.69 to 91.26 in inoculated plants and 64.69 to 82.11 in phosphorus treated plants (Tahir et al., 2009).

Linderman and Glover (2003) have stated that, of the basic nutrients N, P and K, N is supplied by the symbiotic bacteria in the nodules, while the others come from the soil, and will be taken into the plant as it takes up water. The application of 40 mg P kg⁻¹ soil significantly increased the shoot and root dry weight and the application of 0 and 20 mg P kg⁻¹ soil, was significantly lower when compared to the application of 40 mg P kg⁻¹ soil (Olaleye et al., 2012). The application of P at 40 mg P kg⁻¹ soil significantly increased the number of nodules in all the cowpea genotypes studied, however the number of nodules was not significantly influenced by genotype. The increase in number of nodules per plant in cowpea was due to Phosphorus application (Agboola and Obigbesan, 1977).

2.11.3 Weeding

Weed management is essential for any field crop production system or agricultural production, especially for large monoculture areas, which exert high pressure on the environment. Weeds are considered the number one problem in all major soybean producing countries and even with advanced technologies, producers note high losses due to interference by weeds. According to estimates, weeds, alone, cause an average reduction of 37 % on soybean yield (Oerke and Dehne, 2004). In the United States, weeds cause
losses of several millions of US dollars annually and in Brazil, estimated expenses of US$ 1.2 billion on weed control represent between 3 % and 5 % of total production cost (Vivian et al., 2013). Despite differences between soybean cultivars used worldwide and the main weed species which attack these cultivars, there are many resemblances in management practices and control.

Biotic stress of soybean shows a similar mechanism of yield loss. Among biotic stresses, weeds are most common biotic stress found in field crops and greater amount of money is used for weed control. Weeds reduce yield through competition with soybeans for water, light, and nutrients (Hoeft et al., 2000). Depending on weed species, weed population, and environmental conditions, a “critical period” exists in soybean development when weeds must be controlled to maintain yield (Hoeft et al., 2000). Failure to control weeds in the critical period results in reduced soybean vegetative dry matter and grain yield (Hagoodet al., 1981). As with drought, reduced light interception and N deficiency, yield loss occurred through reduced pod and seed numbers (Board and Kahlon, 2011).

2.11.4 Pests and diseases control of soybeans

Pests and disease affect soybean throughout the growing season. Seedling, leaf and stem diseases are generally the only problem in fields planted soybean. Seed treatments with fungicides normally do a good job of controlling early season seedling diseases. Downy Mildew, Septoria Blight and Frogeye Leaf Spot, Pod and Stem Blight or Anthracnose are common diseases of the soybean (Mueller, 2012). Susceptibility of soybean varieties to diseases vary greatly and choosing a resistant variety is much more cost effective than fungicide applications. Plants deficient in K have weak stems, susceptible to some diseases and predisposed to aphid attack. The majority of soybean research has conclusively
demonstrated that environmental stress affects yield through controlled sequential formation and growth of node, reproductive node, pod and seed (Board and Kahlon, 2011).

2.11.5 Harvesting and storage of soybeans

Lee et al (2005), predicted four (4) different groups of soybean plant maturity with respect to days to first flowering. Generally, the soybean plants were grouped in maturity I, II, III and IV in which first flower can occur in maturity group I few days before the actual predicted days and few days after the predicted days flowers can be observed in maturity group IV. According to them, maturity group I takes 28–33 days, maturity group II 34–38, maturity group III 37–47 and maturity group IV 43-55 days to observe the first flower. The predictions of first flowering dates are based on weather because flowering depends on both day length and temperature, so the predicted dates may occur slightly earlier in areas where temperatures are slightly warmer (Lee et al., 2005).

Harvesting of soybean is done at any time they are matured and the foliage of the plants is dried. The optimum harvest moisture range of soybean is 13 % to 15 % for maximum weight and to achieve minimum field losses before and during harvesting. Seeds of soybean are crushed and bruised when harvested at the moisture content more than 18 % and many pods opened plants lodged when the harvesting moisture content is below 13 %. Cleaning and handling seed of soybean at 10 % moisture content can reduce germination when used as seeds for the next planting season. Proper drying and storage will maintain quality soybean and assure minimum losses.
2.12 Factors affecting soybean production

2.12.1 Soil acidity

Soil acidity is determined by the amount of hydrogen (H\(^+\)) activity in soil solution and influenced by edaphic, climatic, and biological factors (Carver and Ownby, 1995). Acidity refers to concentration of hydrogen cations in a solution (FAO, 2006). The pH values range from 0 to 14, in which below 7 indicates an acid solution, above 7 alkaline and 7 neutral solutions (Foth & Turk, 1972; Crawford, Singh & Breman, 2008). The pH values range from 0 to 14, in which below 7 indicates an acid solution, above 7 alkaline and 7 neutral solutions (Foth and Turk, 1972; Singh and Breman, 2008).

Soils that are acid have pH values less than 7 on the pH scale (SSSA, 1997). Theoretically, soil acidity is largely associated with the presence of hydrogen and aluminium ions in exchangeable forms (Brady, 2001; Fageria and Baligar, 2003). Thus, the higher the concentrations of these ions in soil solution, the higher the acidity. Most acid soils have been found to be low in fertility, have poor physical, chemical, and biological properties. Crop production on such soils is seriously constrained, particularly in areas where proper management measures have not been put in place (He et al., 2003).

The natural pH of a soil depends on the nature of the material from which it was developed (TSO, 2010). In most soils, pH ranges from 2.0 to 11 (Batjes, 1995) and is used for classifications of soils (Landon, 1991; Soil Survey Staff, 1993; Kanyanjua et al., 2002). Table 3 shows classification of soils according to the level of pH.

<p>| Table 3: Classification of soil acidity according to the level of pH |</p>
<table>
<thead>
<tr>
<th>Soil acidity class</th>
<th>pH range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Extremely acidic</td>
<td>< 4.5</td>
</tr>
<tr>
<td>Strongly acidic</td>
<td>4.5 – 5.0</td>
</tr>
<tr>
<td>Moderately acidic</td>
<td>5.0 – 6.0</td>
</tr>
<tr>
<td>Slightly acidic</td>
<td>6.0 – 6.5</td>
</tr>
<tr>
<td>Near neutral</td>
<td>6.5 – 7.0</td>
</tr>
</tbody>
</table>

In soils of low pH, containing high amounts of Al and Fe oxides, P is deficient in the soil solution because it is precipitated or surface adsorbed with Al and Fe as insoluble compounds (Kanyanjua et al., 2002). Several other essential plant nutrients, which are present in the soil solution as cations, are deficient.

Soil acidity is one of the most important soil factors which affect plant growth and ultimately limit crop production and profitability (Fageria, 2009). Soil acidity is one of the most prevalent problems in the production of food and fiber because about 40% of the world’s arable land is affected by this problem (Zdenko, 2003). These effects include injury on plant roots therefore reducing water and nutrient uptake, reduced availability of essential plant nutrients, toxicity of Al and Manganese (Mn); and survival of microorganisms in the soil (Crawford et al., 2008; Onwonga et al., 2008).

To enable crop production in acid soils, several means to correct nutrient deficiency can be adopted. These include liming, addition of organic matter, and fertilization with mineral fertilizers (Onwonga et al., 2010; Masarirambi et al., 2012). Liming reduces Al^{3+} and H^+.
ions as it reacts with water leading to the production of OH\(^-\) ions, which react with Al\(^{3+}\) and H\(^+\) in the acid soil to form Al(OH)\(_3\) and H\(_2\)O. The precipitation of Al\(^{3+}\) and H\(^+\) by lime causes the pH to increase, enhances microbial activity and nutrient availability (Onwonga \textit{et al.}, 2008).

Soybean as leguminous crop relies on microbial nitrogen fixation as source of N. However, under acid soils, the population of rhizobia bacteria is reduced and consequently nodulation and N fixation is impaired. This affects negatively on crop nutrition and yields. Therefore, liming acid soils for soybean production improves soils condition for microorganism development. Mineral fertilizers increase nutrient availability in the soil solution since they are readily available, and the addition of organic matter acts as supply of microorganism’s food enhancing their population and therefore mineralization (Crawford \textit{et al.}, 2008).

\textbf{2.12.2 Aluminum and hydrogen toxicity}

Aluminium toxicity is considered the most important growth-limiting factor for plants in acid soils (Foy \textit{et al.}, 1978; Foy, 1984; Carver and Ownby, 1995; Jayasundara \textit{et al.}, 1998). The primary response to aluminium stress occurs in the roots (Foy \textit{et al.}, 1978; Foy, 1984, Taylor, 1988, Jayasundra \textit{et al.}, 1998). Aluminium-injured roots are stubby and brittle. Root tips and lateral roots thicken and turn brown. The root system as a whole is affected, with many stubby lateral roots and no fine branching. Such roots are inefficient in absorbing nutrients and water (Foy \textit{et al.}, 1978). The main symptom of Al toxicity is rapid inhibition of root growth. A number of mechanisms may cause this, including Al interactions within the cell wall, the plasma membrane, or the root cytoplasm (Taylor, 1988; Marschner, 1991; Horst, 1995; Kochian, 1995).
Hydrogen ions do not directly affect the growth of non-legume until the soil pH is below 3.4. Legumes are more sensitive to hydrogen ions, although it is actually the rhizobia that are affected rather than the plant. This affects the complex process of nodule formation which reduces the growth of legumes and the amount of nitrogen fixed – legumes may even show symptoms of nitrogen deficiency (Andréa et al., 2000). Hydrogen toxicity, decreases phosphorus availability and toxicities of some other trace elements and heavy metals (Opala, 2011).

2.12.3 Nutrient solubility and availability

A high concentration of H\(^+\) ions (low pH) in the soil can lead to nutrient deficiencies. Acidic conditions can lower the levels of phosphorus, calcium, magnesium and molybdenum, nutrients that are essential to plant growth (Forbes et al., 1992).

2.11.4 Nitrogen

Nitrogen is a key element in plant growth, and plants need plenty of it in the growing season. But too much nitrogen can actually slow plant growth because nitrogen not used by plants is washed (leached) out of the soil, which makes soil acid (Rebecca, 2004). The decomposition of plant residues and the return of larger amount of nitrogen are more rapid in the pH range of 6.0 to 7.2 rather than under acidic conditions that inhibits the growth and activity of symbiotic and other microbes. To that effect, soils often are limed to pH of 6.0 or pH 6.5 to enhance nitrification. The process of atmospheric nitrogen fixation, both symbiotic and non-symbiotic, is also favoured by adequate liming. Regrettably, there has not been much undertaking to that end. Now, however, there is the beginning of the awakening with the imperative to understand the processes in these soils in relation to
nitrogen. This will further fine-tune their sustained management for enhanced economic benefits with bearings on the cardinal issue of the environment (Mesfin, 2007).

2.12.5 Micronutrients

The special soil conditions that influence the availability of micronutrients is pH. It has been confirmed that with the exception of molybdenum, whose deficiency decreases with increase in soil pH, the availability of the other micronutrients increases with decrease in soil pH or increase in soil acidity. The availability of the micronutrients; manganese (Mn), iron (Fe), copper (Cu), zinc (Zn), and boron (B) tend to decrease as soil pH increases. The exact mechanisms responsible for reducing availability differ for each nutrient, but can include formation of low solubility compounds, greater retention by soil colloids (clays and organic matter) and conversion of soluble forms to ions that plants cannot absorb adverse effects of heavy metals on nodulation and N\textsubscript{2} fixation of legumes have been reported for clover and chickpea. Griller et al (1989), suggested two possibilities to explain the mechanism by which the elevated metal concentrations eliminated N\textsubscript{2} fixation: (1) one or more of the metals present might have prevented the formation of N\textsubscript{2}-fixing nodules by effective \textit{Rhizobium} strains present in the soil or (2) the metal contamination might have resulted in elimination of the effective \textit{Rhizobium} strains from the soil (Foy et al., 1978).

2.12.6 Microbial growth and activity

Low pH levels in soils can have a severe effect on the microorganisms that form symbiotic relationships with plants. A study examining the effects of soil pH on cowpea showed that poor growth of plants can sometimes be attributed to poor microorganism activity (Peet et al., 2003). Microorganisms in the soil aid plant growth by forming symbiotic relationships.
with roots, aiding in nutrient absorption. These relationships can be affected by low soil pH. In legumes, nodules are not produced at low pH levels lower than 5.0. Also, low soil pH can reduce the diversity of microorganisms and the numbers of rhizobia in the soil available for symbiotic relationships (Rengel, 2002).

2.12.7 Species diversity and richness of plants

The pH of soil can also affect plant species diversity and richness. A study done in the Blue Ridge region of the U.S., where highly acidic soils are prominent, concluded that sites with higher pH have more species richness. Also, the average density of species was twice as high in regions with high pH, as compared to regions with low pH. This condition was attributed to the more encouraging growing conditions associated with higher pH levels (Peet et al., 2003). The study also shows that species diversity was lower in regions with acidic soil. It was noted that this condition was probably due to the fact that plants must be highly specialized to survive in acidic conditions (Peet et al., 2003).

2.13 Ameliorating soil acidity

2.13.1 Organic amendment

During the decomposition of plant and animal debris, a whole range of organic compounds are released from the debris and/or synthesized by the decomposer microorganisms. Aluminum can bind strongly with many of these compounds. Soil organic matter complexes with Al and other polyvalent cations can be grouped into two main categories (Stevenson and Vance, 1989). These are: (i) well-defined biochemical compounds such as simple aliphatic organic acids, phenols, phenolic acids, hydroxamate siderophores, sugar acids and polymeric phenols and (ii) complex humic materials. While the decrease in
exchangeable Al by lime is mainly a function of the rise of soil pH, the same is not always true for all OMs. There are other mechanisms involved in the reactions of Al with OMs which are intricate and probably involve complex formation with low molecular weight organic acids, such as citric, oxalic and malic acids, and humic material produced during the decomposition of the OMs and adsorption of Al onto the decomposing organic residues (Opala, 2011).

Ash is composed of many major and minor elements which trees need for growth. It contains 15 % Calcium, 2.6 % Potassium, 1.6 % Aluminium and 1.0 % Magnesium and Iron, Phosphorus, Manganese, Sodium and Nitrogen are less than 1 % in Ash (Muse and Mitchell, 1995). Most of these elements are extracted from the soil and atmosphere during the plant’s growth and they are essential in production of crops and forages. The high content of calcium in the Ash gives ash properties similar to agricultural lime. Ash can also be a good source of potassium, phosphorus, and magnesium and it has about 0-1-3 (N-P-K) in commercial fertilizer (Risse and Gaskin, 2013).

In addition, wood ash is a good source of many micronutrients needed in trace amounts for adequate plant growth and contains few elements that pose environmental problems. Wood ash has a liming effect of between 8 and 90 percent of the total neutralizing power of lime, and can increase plant growth up to 45 percent over traditional limestone (Risse and Gaskin, 2013).

The major constraints to land application of wood ash are transportation costs, low fertilizer analysis, and handling constraints. Wood ash application is similar to lime application and both have benefit to crop productivity, but wood ash supplies additional nutrients. These materials are also alkaline and could cause crop damage if over applied or misused (Risse
and Gaskin, 2013). Ash is an alkaline material with a pH ranging from 9 to 13 and contains 43% of CaCO$_3$ (Muse and Mitchell, 1995). Lime has a pH of 9.9, 31% Calcium, 5.1% magnesium and 100% CaCO$_3$ (Campbell, 1990).

2.13.2 Chemical amendment (liming)

Liming acid soils for the production of legumes may increase yield by improving survival and growth of rhizobia in the rhizosphere, and by assisting in the formation of nodules by lowering the hydrogen ion activity and providing calcium. The extent to which these factors affect N$_2$ fixation is of considerable interest when assessing the lime requirements of legume crops. Hoyt and Nyborg (1972) showed that, yield responses of rapeseed (Brassica campestris L.), barley (Hordeum vulgare L.) and alfalfa (M. sativa L.) to liming were correlated with the amounts of plant available Al and Mn in acid soil. However, they recognized that N fixation by alfalfa may be restricted by soil acidity even when toxic amounts of Al and Mn are not present, and suggested that diagnosis of the need for liming should be based on pH and plant available Al and Mn.

The detrimental effect of low pH in the absence of toxic levels of Al and Mn on nodulation and N$_2$ fixation by alfalfa was demonstrated by Rice (1975), in greenhouse experiments. Amelioration of acid soils by surface application of lime and other materials is the main commercially available option. Lime application on surface soil generally does not have a rapid effect in reducing the subsoil acidity. Furthermore, mixing lime with the subsoil is generally not economically feasible.

Therefore, selecting and growing acid-tolerant cultivars may be a sustainable approach for the better growth and productivity of pastures and pulse crops on acid soils (Hynes, and
Mokolobate, 2001). The application of lime and fertilizer separately as well as in combination gave significantly higher number of pod bearing branches, shoot dry weight and taller soybeans than those crops grown without lime and fertilizer (Workneh et al., 2013).

Soils are limed to reduce the harmful effects of low pH (aluminium or manganese toxicity) and to add calcium and magnesium to the soil. The amount of lime needed to achieve a certain pH depends on (1) the pH of the soil and (2) the buffering capacity of the soil. The buffering capacity is related to the cation exchange capacity (CEC). The higher the CEC, the more exchangeable acidity (hydrogen and aluminium) is held by the soil colloids. As with CEC, buffering capacity increases with the amounts of clay and organic matter in the soil. Soils with a high buffering capacity require larger amounts of lime to increase the pH than soils with a lower buffering capacity.

Lime reduces soil acidity (increases pH) by changing some of the hydrogen ions into water and carbon dioxide (CO₂). A Ca²⁺ ion from the lime replaces two H⁺ ions on the cation exchange complex. The carbonate (CO₃²⁻) reacts with water to form bicarbonate (HCO₃⁻). These react with H⁺ to form H₂O and CO₂. The pH increases because the H⁺ concentration has been reduced.

2.13.3 Liming materials

Lime in general sense is any material that: (1) contains calcium (Ca) or magnesium (Mg) and (2) will neutralize soil acidity. For example, calcium carbonate (CaCO₃) is a liming material because it contains Ca and the carbonate portion of the material (CO₃) will neutralize soil acidity (Mahler, 2000). Liming materials include limestone, burned lime, slaked lime, marl, oyster shells, slag, Cement plant flue dust, mine tailings, sugar beet
sludge, wood ashes, and paper mill lime sludge. Liming materials fall into the following four categories: carbonates, oxides, hydroxides, and by-product materials. In general, carbonate materials account for more than 90 percent of the lime used in the United States. Factors favouring carbonates over oxides and hydroxides include (1) ease of handling, (2) lower cost, and (3) the availability of many more sources. Although smaller amount of hydroxides and oxides are needed for raising soil pH, those two materials generally are used only when the grower requires a rapid pH change (Munroe and Murdock, 1993). Pulverized limestone is the most common material used to raise soil pH. Limestone consists either of calcium carbonate (calcitic limestone) or calcium/magnesium carbonate (dolomitic limestone).

2.13.4 Estimation of lime rate

Soil test help determine the amount of lime required to raise soils to a desired pH. Perform a lime requirement test on all soils with a pH of 5.1 or lower. Soil pH is more critical for legumes such as alfalfa, lentils, soybean and peas than for cereals. Consequently, for soils testing less than pH 5.5 performs a lime requirement test where legumes are grown. Numbers obtained from lime requirement soil tests are often meaningless when soil pH values exceed 5.6. Several different lime requirement tests have been developed to determine the amount of lime needed for improving crop yields.

A lime requirement test is necessary for determining the correct amount of lime to apply because over-applications may decrease soil productivity. In addition to soil pH, soil texture, clay content, cation exchange capacity (CEC), base saturation, and other factors affect the amount of lime needed (Mahler, 2000). The level of soil acidity that is tolerable in any situation is determined by the permissible acid saturation (PAS) of the crop to be
grown. If soil acid saturation exceeds the PAS, the excess acidity has to be neutralized by liming. If it is assumed that the neutralizing value of the lime available is 75% that of pure CaCO$_3$ (this will be dependent on purity and hardness, and in particular in fineness of the product) and that incorporation depth is 15 cm, the lime needed per hectare to eliminate an exchangeable acidity of 1 meq/100g will be approximately 3000 kg. If the neutralizing value of the lime is lower or higher than 75% the lime requirement factor will be adjusted accordingly (Taye et al., 2002).

Accordingly, lime requirement is calculated using acid saturation as follows;

$$LR = LRF \times (EA - PAS),$$

where, $LRF =$ Lime Requirement Factor, $PAS =$ Permissible Acid Saturation, $EA =$ Exchangeable Acidity.

2.13.5 Liming time, placement and frequency of application

For crop rotations that include legumes like soybean, alfalfa or clovers, lime should be applied to allow enough time for reaction with the soil before the legumes are planted. Ideally, lime should be applied three to six months ahead of seeding the targeted crop. Applications as late as just before planting, with good soil incorporation, can still be beneficial on strongly acid soils. Some reduction in soil acidity will still occur, although maximum pH increases are not normally reached until about one year after application of typical agricultural limestone. Placement is just as important as lime quality. Maximum contact with the soil is essential for neutralization of soil acidity. Most common liming materials are only sparingly soluble in water. For example, ammonium nitrate is about 84,000 times more soluble than pure calcium carbonate. Even if lime is properly mixed into the plough layer, it will have little reaction if the soil is dry. Moisture must be available for the lime-soil reaction to occur. Perhaps the best way to incorporate lime or any other
material with the plough layer is to use two perpendicular passes of a combination disc, followed by a chisel plough. Deep ploughing of lime does not achieve desirable mixing in the upper six to eight inches of soil.

However, because the plough or a heavy breaking disc inverts the lime, it can help to distribute the lime in the upper portion of the subsoil. Choice of tillage equipment will depend on the depth at which soil acidity neutralization is most needed. Good horizontal and vertical mixing of the lime provides the best results (Synder, 1987).

On soils low in magnesium, dolomitic limestone is the preferred form. Lime recommendations for raising soil pH are given in terms of pulverized limestone but other liming sources can be used. Lime is applied only if a need is indicated by the results of soil testing and the requirements of the plants being grown. Over liming can reduce nutrient availability, especially of micronutrients like iron, manganese, and zinc. Iron deficiency (chlorosis) of pin oak, for example, is common when soil pH is greater than 7.0 (McLean, 1971).

In soils of low pH, containing high amounts of Al and Fe oxides, P is deficient in the soil solution because it is precipitated or surface adsorbed with Al and Fe as insoluble compounds (Kanyanjua et al., 2002). Several other essential plant nutrients, which are present in the soil solution as cations, are deficient.

These effects include injury on plant roots therefore reducing water and nutrient uptake, reduced availability of essential plant nutrients, toxicity of Al and Manganese (Mn); and survival of microorganisms in the soil (Crawford et al., 2008; Onwonga et al., 2008).

To enable crop production in acid soils, several means to correct nutrient deficiency can be adopted. These include liming, addition of organic matter, and fertilization with mineral
fertilizers (Onwonga et al., 2010; Masarirambi et al., 2012). Liming reduces Al^{3+} and H^+ ions as it reacts with water leading to the production of OH^- ions, which react with Al^{3+} and H^+ in the acid soil to form Al(OH)_3 and H_2O. The precipitation of Al^{3+} and H^+ by lime causes the pH to increase, enhances microbial activity and nutrient availability (Onwonga et al., 2008).

Soybean as leguminous crop relies on microbial nitrogen fixation as source of N, however, under acid soils, the population of rhizobia bacteria is reduced and consequently nodulation and N fixation is impaired. This affects negatively on crop nutrition and yields. Therefore, liming acid soils for soybean production improves soils condition for microorganism development. Mineral fertilizers increase nutrient availability in the soil solution since they are readily available, and the addition of organic matter acts as supply of microorganism’s food enhancing their population and therefore mineralization (Crawford et al., 2008).

2.13.6 Role of biological nitrogen fixation in cropping system

Nitrogen compounds comprise 40 to 50 per cent of the dry matter of protoplasm, the living substance of plant cells (Dreyfus et al., 1987). For this reason, nitrogen is required in large quantities by growing plants and is indeed the key to soil fertility. The nutrient is needed by the plant as an integral part of all proteins, and is one of the main nutrients required for plant growth and photosynthesis which occurs at high rates when there is sufficient nitrogen. A plant receiving sufficient nitrogen will typically exhibit vigorous plant growth, leaves will also develop a dark green colour.

Nitrogen represents about 72% of atmospheric gases but it is required by the plants in form of ammonium (NH_4^+) and nitrate (NO_3^-). As microorganisms decompose organic matter, ammonium is released in a process called mineralization for plant uptake. In addition to
organic N, plants are also supplied with inorganic N fertilizer for plant growth and development when soil N is deficient.

Legumes have the potential to contribute to the soil N budget through biological N\textsubscript{2} fixation (BNF), a process which is becoming more important for not only as potential cheap alternative to mineral N fertilizers for providing N to crops but also in seeking more sustainable agricultural production (Boddey et al., 1997; Giller et al., 1997). Biological nitrogen fixation makes a significant contribution to N supply in cropping systems where legumes are grown in rotation or intercropped with cereals either as crops in their own right or as green manures. Evidence of N transfer from legume to cereal has been obtained in some intercropping and rotation studies through root excretion, N leached from leaves and leaf fall (Fujita et al., 1992; Stern, 1993; Ledgard and Giller, 1995; Yusuf et al., 2009). For example, Eaglesham et al (1981), showed that, 24.9 % of N fixed by cowpea was transferred to maize. Up to 35 % of N in maize grown after pigeon pea was shown by isotope dilution to be from nitrogen fixation and part of the fixed nitrogen was from below ground parts.

Similarly, Mandimba (1995) revealed that, the nitrogen contribution of groundnut to the growth of maize in intercropping systems is equivalent to the application of 96 kg of N/ha at a ratio of plant population densities of one maize plant to four groundnut plants. Osunde et al (2004), found that, without the addition of fertilizer the proportion of N derived from N\textsubscript{2}-fixation was about 40 % in the intercropped soybean and 30 % in the sole crop. For many farmers, BNF is, therefore, an essential, cost effective alternative or complementary solution to industrially manufactured N fertilizers for staple cereal crops (Carlsson and Huss-Danell, 2003). Legumes such as soybean that have been subject to intense breeding
efforts are very efficient at translocating their N into the grain ranging from 50-150 kgN/ha (Matusso et al., 2014), and even when the residues are returned to the soil there is generally a net removal of N from the field (Giller et al., 1994). Soybean residues at harvest are lignified (10 % lignin) with C/N ratios around 45:1 and these tend to immobilize N when they are added to the soil on short term and released for plant uptake in the long term (Toomsan et al., 1995). Specifically, soybean can fix 49-450 kg N/ha (Peoples and Crasswell, 1992); and net benefits ranging from 100 to 260kg N/ha (Maphumo, 2011). Positive net N balances of up to 136 kg/ha for several legume crops such as cowpea, pigeon pea, green gram and groundnuts following seed harvest have been shown by Peoples and Craswell (1992). However, if crop residues are removed from the field, the net N balances for soybean ranges from 28 to 104 kg/ha. Some promiscuous soybean varieties that produce large quantities of leafy biomass have a greater potential to add N to the soil, and are potentially more appropriate for cultivation by smallholder farmers than the recommended varieties grown on commercial farms in southern Africa requiring Rhizobia inoculant (Mpepereki et al., 2000). While legumes can improve soil fertility through BNF, low soil fertility limits N fixation and the overall growth and yield of legumes grown on smallholder farms.

2.13.7 Nitrogen fixation

Soybean is a legume and normally provides itself nitrogen, through a symbiotic relationship with nitrogen fixing bacteria of the species, Bradyrhizobium japonicum (Sarkodie-Addo et al., 2006; Nastasija et al., 2008). Bacteria present in soybean root nodules will fix nitrogen from the atmosphere, normally supplying most or all nitrogen needed by the plant. Soybean grown on soil where nodulated soybean has been grown in
recent years will probably not require inoculation; however, if there is any question about
the presence of Rhizobium bacteria, inoculation is recommended (Darryl et al., 2004;
Nastasija et al., 2008).

The amount of nitrogen that a plant can fix depends on the variety, the productivity of
Rhizobium bacteria, the soil and the climatic conditions. Soybean is capable of fixing
between 60 kg and 168 kg of nitrogen per hectare per year under suitable conditions (Rienke
and Joke, 2005). Soybean nitrogen requirements are met in a complex manner, as it is
capable of utilizing both soil nitrogen, in the form of nitrate and atmospheric nitrogen,
through symbiotic nitrogen fixation. In the symbiotic relationship, carbohydrates and
minerals are supplied to the bacteria by the plant, and the bacteria transform nitrogen gas
from the atmosphere into ammonium and nitrate for use by the plant (Frazen, 1999).

Plant population is one factor that may influence how much residual nitrogen, soybean is
contributing to a cropping system. Estimated nitrogen fixation of determinate soybean was
approximately, increased from 200 to 280 kg ha\(^{-1}\), when plant population was increased
from 48,500 to 194,000 plants ha\(^{-1}\) respectively (Ennin and Clegg, 2001). The process of
nitrogen fixation requires the presence of the right species of the nitrogen fixing bacteria
in the soil, and they are often attracted to the roots by chemical signals from the soybean
root (Rienke and Joke, 2005). Once in contact with the root hairs, a root compound binds
the bacteria to the root hair cell wall. The bacteria release a chemical that causes curling
and cracking of the root hair, allowing the bacteria to invade the interior of the cells, and
begin to change the plant cell structure to form nodules. The bacteria live in compartments
of up to 10,000 in a nodule, called bacteroids.
The nitrogen fixation is aided by an enzyme, nitrogenase which takes place in an environment without oxygen, through a transfer compound, leghemoglobin. And this results in a pink-red colour of nodule interiors, an indication of active fixation of nitrogen (Lindermann and Glover, 2003).

Ferguson et al (2006), reported that, soybean plant will effectively utilize soil residual nitrate and nitrogen mineralized from soil organic matter, obtaining 25 to 75 percent of plant nitrogen, with the balance supplied from symbiotic fixation. Legume nodules that are not fixing nitrogen usually turn white, grey or green and may actually be discarded by the plant. This may be as a result of inefficient Rhizobium strain, poor plant nutrition, pod filling or other plant stresses. Nastasija et al (2008), have outlined the following as limiting factors to N-fixation:

A temperature of 16 °C to 27 °C is ideal, while levels above or below this reduce bacterial activity and slow the establishment of the N-fixing relationship.

i. When soil N levels are too high, nodule number and activity decrease. Roots do not attract bacteria or allow infection; hence, nitrogen fixation is limited.

ii. Poor plant growth does not allow the plants to sustain nodules and plant growth, therefore sacrificing nodule activity.

iii. If soil pores are filled with water, and not air, there will be no nitrogen to be fixed.

Major amount of nitrogen is fixed by legume through the action of microorganism (Biological nitrogen fixation). Biological nitrogen fixation is a process used by microorganisms living in the soil to fix nitrogen in leguminous plants (Gregoire, 2003). It involves association of rhizobia and legumes. The rhizobium - legume symbiosis plays an
important role in agriculture, because it offers the ability to convert atmospheric molecular nitrogen into forms useable by the plant (Jensen and Nielsen, 2003). During nodulation, host plants excrete flavonoids and bacteria. Nod–protein recognizes proper flavonoids, and initiates synthesis of nod- factor by a series of nod genes products (Date and Halliday, 1987). Nod factor, in return initiate early processes of nodulation. The first nodules form within one week after seedling emergence and become visible as they increase in size. Ten to fourteen days later, the nodule bacteria are able to supply most of the plant’s nitrogen requirements. The nodules allow fixation of atmospheric nitrogen but are energetically expensive to develop and maintain (Shantharam and Mattoo, 1997). Hence the host suppresses the growth of most potential root nodules soon after the initial bacterial invasion of root hairs (Spaink, 1995). It also further regulates nodule number in response to environmental factors such as the presence of nitrate or other sources of fixed nitrogen in the soil (Vandyk, 2003). The nodules which are bright in colour are effective while the nodules white in colour are ineffective, or have not yet developed to a stage at which they can fix nitrogen.

Soybean are nodulated by the slow growing *Bradyrhizobium japonicum* (Jordan, 1982), *Bradyrhizobium elkanii* (Kuykendall et al., 1992), *Bradyrhizobium liaoningese* (Xu et al., 1995) as well as the fast growing *Sinorhizobium fredii* (Scholla and Elkan, 1984). Promiscuous soybean varieties are known to nodulate with a wide range of rhizobial strains and therefore, are likely to be widely adopted by farmers (Okereke et al., 2000; Fening and Danso, 2002; Okogun and Sanginga, 2003). The foregoing researchers have only dealt with the type of *Bradyrhizobium* that fix nitrogen with the soybean, but they have not shown which one is more effective in fixing nitrogen, under varying conditions of host and non -
host factors. The effectiveness of BNF depends on the management of other inputs such as nutrient availability, population of rhizobia and soil pH (Jones and Giddens, 1985; Keyser and Li, 1992; Peoples et al., 1989; Ukovich et al., 2008).

The process of biological nitrogen fixation by legume nodules requires large amounts of P, and its availability is a primary constraint to N₂ fixation (Danso, 1992; Better Crops, 1999; Sanginga, 2003; Kamara et al., 2007). Deficiencies of soil nutrients, especially P may restrict the development of a population of free-living rhizobia in the rhizosphere, limit the growth of the host plant, restrict nodulation itself, and cause an impaired nodule function (Better Crops, 1999; Danso, 1992). Moreover, limitation of N mineral in the soil tends to enhance fixation by legumes including soybean (Ukovich et al., 2008). The population and activity of rhizobia is highly influenced in acid soils, affecting directly N fixation (Jones and Giddens, 1985).

2.13.8 Factors influencing biological nitrogen fixation (rhizobia inoculation) in legumes

The introduction of superior strains of rhizobia into the soil does not guarantee a higher BNF hence higher yield (Lupwayi et al., 2000). However, in the absence of all other factors that affect nitrogen fixation, an introduced strain should be able to compete with the native rhizobia for nodulation. The efficiency and effectiveness of the introduced strain is limited by a number of factors; these factors have the tendency to influence the symbiotic relationship between the legume and the rhizobia. It reduces the ability of the rhizobia to form nodules with optimum N₂– fixation capacity (Slattery and Pearce, 2002). The success of inoculation, therefore, depends on a number of factors which are not excluded to indigenous rhizobia and N availability (Keyser and Li, 1992).
The present of bacteria Rhizobia and growth in the soil are affected by many factors. The growth and healthy activities of Rhizobia depend on the initial population of bacteria and the soil conditions that favor or hinder its development (Crop Focus, 2011). When the soil is limited with oxygen supply, the activity of the Rhizobia is reduced and ample oxygen availability in the soil will activate its activity.

The acidity of the soil and amount of nitrogen present in the soil affect the health of the bacteria, as it does to the soybean plants. Soil pH <5.6 or >8.0 creates a difficult environment for the bacteria to function efficiently as well affect soybean productivity (Crop Focus, 2011). Nitrogen availability in the soil will also reduce the soybean-to-bacteria relationship. The plant may not initially need the bacteria due to excess residual nitrogen in the soil. In such cases, the soybean plant will not recognize the bacteria chemical reaction, and thus will not initiate nodular tissue formation (Crop Focus, 2011).

2.13.8.1 Indigenous / native rhizobia

The amount of nitrogen fixed is usually high in soils with low mineral N but with sufficient water and enough of other nutrients capable of supporting plant growth (Unkovich et al., 2008). Nodule formation and functioning is suppressed as the level of soil mineral N in the rhizosphere increases (Keyser and Li, 1992). Ideally, higher nodulation should increase the amount of nitrogen fixed but this could be limited by several environmental factors. For example, the legume – rhizobium symbiosis may not produce enough nitrogen during the early stages of growth to meet the N demand of the legume. Hence small application of chemical N is necessary to promote early growth (Keyser and Li, 1992). Nitrogen application at either vegetative or flowering stage can potentially increase pod and crop biomass by 44 % and 16 % respectively (Katulanda, 2011). There are several contradictory
reports on the response of legumes to nitrogen application. There is a higher probability of obtaining positive response to inoculation when soil nitrate is low and legume has a high potential for growth and in the same way high soil nitrate can potentially hinder N\textsubscript{2} fixation (Peoples \textit{et al.}, 1995). Response of legumes to nitrogen application depends on the time of application and the rates of application (Yinbo \textit{et al.}, 1997).

2.13.8.2 Nutrient management systems and their deficiencies in legume - rhizobia symbiosis

In Rhizobium - legume symbiosis, the essential mineral nutrients are those required for the normal establishment and functioning of the symbiosis. Based on this definition adapted from Arnon \textit{et al} (1939), the following chemical elements C, H, O, N, P, S, K, Ca, Mg, Fe, Mn, Cu, Zn, Mo, B, Cl, Ni and Co are known to be essential for the legume - rhizobium symbiosis. Each essential nutrient has specific physiological and biochemical role with minimal nutrient concentrations required within both legumes and rhizobia to sustain metabolic function at rates which do not limit growth (Graham \textit{et al.}, 1988).

Mineral nutrients influencing nitrogen fixation in leguminous plants can result in both positive and negative effects. For example, the presence of mineral nitrogen in the soil inhibits both nodule formation and nitrogenase activity (Sprent \textit{et al.}, 1988) though there are contradicting reports to this. Other researchers have reported the need for mineral nutrient to establish the plant before nodulation commences (Becker \textit{et al.}, 1991; Keyser \textit{et al.}, 1992; Hardarson, 1993; Carsky \textit{et al.}, 2001). The enhancing effect of low levels of combined nitrogen on N\textsubscript{2} fixation in legumes is related to the lag phase between root infection and the onset of N\textsubscript{2} fixation. Phosphorus (P) is second only to nitrogen as an essential mineral fertilizer for crop production. At any given time, a substantial component
of soil P is in the form of poorly soluble mineral phosphates. A high phosphorus supply is needed for nodulation. When legumes dependent on symbiotic nitrogen receive an inadequate supply of phosphorus, they may suffer from nitrogen deficiency. Weisaney et al (2013), reported that, the deficiency of phosphorous supply and availability remains a severe limitation to nitrogen fixation and symbiotic interactions.

Potassium and sulphur are not usually liming nutrients for nodulated legumes, although a K⁺ supplement for osmo-adaptation has to be considered for growth in saline soils. Among mineral nutrients, boron (B) and calcium (Ca) are undoubtedly the nutrients with a major effect on legume symbiosis. Both nodulation and nitrogen fixation depend on B and Ca²⁺, with calcium being more necessary for early symbiotic events and B for nodule maturation (Delgado, 1998). Copper (Cu) plays a role in proteins that are required for N₂ fixation in rhizobia. Copper deficiency decreased nitrogen fixation in subterranean clover. Iron is required for several key enzymes of the nitrogenase complex as well as for the electron carrier ferredoxin and for some hydrogenase. A particular high iron requirement exists in legumes for the heme component of haemoglobin (Tang et al., 1992).

Molybdenum is a metal component of nitrogenase; all N₂-fixing systems have a specific high molybdenum requirement. As reported by Brodrick et al (1991), molybdenum deficiency induced nitrogen deficiency in legumes. Relying on N₂ fixation is widespread, particularly in acid mineral soils of the humid and sub humid tropics. A specific role for nickel in nitrogen fixing bacteria according to Buerkert (1990), is now well established with the determination that a nickel - dependent hydrogenase is active in many rhizobial bacteria. Ahmed et al (1960), also reported that, cobalt is required for the synthesis of leghemoglobin and for the growth of legumes relying on symbiotically fixed nitrogen. It
has been established that rhizobium and other N₂-fixing microorganisms have an absolute cobalt requirement whether or not they are growing within nodules and regardless of whether they are dependent on a nitrogen supply from N₂ fixation or from mineral nitrogen. Therefore, in sustainable BNF in agriculture systems, the use of mineral fertilizers is one of the most important principles though it has to be done minimally and specifically according to the requirement of each farm location.

2.13.8.3 Optimization of n fixation

Biological N fixation presents economic, environmental, and agronomic benefits and could be used to a larger degree as an alternative to synthetic fertilizers (Silva and Uchida, 2000). However, nitrogen fixation in legumes requires the symbiotic interaction of plants with rhizobia bacteria. Increasing the quantity and efficiency of the N₂ fixation process could increase crop productivity and reduce fertilizer costs. Optimizing this symbiosis may require improving the selection of the host and rhizobia participating in this interaction. Breeding for improved cultivars of legumes may enhance the genetic potential of the plants in fixing nitrogen which can result in 10% increase in N₂-fixed relative to existing cultivars according to Giller and Cadish (1995).

Biological nitrogen fixation may be increased by repeated rhizobial inoculation (Vessey, 2004; Athar, 1998), use of more effective strains (Hynes et al., 1995), or co-inoculation with “helper organisms” such as mychorrhizae (Dileep - Kumar et al., 2001). The efficiency of N₂ fixation is not only dependent on the selection of the most robust strains of rhizobia but is also related to crop varieties and the interactions of specific strains with specific varieties. Good growth of the legume is also of importance (Keyser and Li, 1992). The environment also plays an important role, because it is the soil and climatic condition
that will determine the plant growth and indirectly nodulation and root development. Giller and Cadish (1995) and People et al (1995), suggest that conditions that will render the soil non – productive should be guarded against. The legume and the inoculum strain should be able to survive and function optimally in the environment in question.

2.13.8.4 Nitrogen availability

The amount of nitrogen fixed is usually high in soils with low mineral N\textsubscript{2} but with sufficient water and enough of other nutrients capable of supporting plant growth (Unkovich et al., 2008). Nodule formation and functioning is suppressed as the level of soil mineral N in the rhizosphere increases (Keyser and Li, 1992). Ideally, higher nodulation should increase the amount of nitrogen fixed but this could be limited by several environmental factors. For example, the legume – rhizobium symbiosis may not produce enough nitrogen during the early stages of growth to meet the N\textsubscript{2} demand of the legume. Hence small application of chemical N\textsubscript{2} is necessary to promote early growth (Keyser and Li, 1992). Nitrogen application at either vegetative or flowering stage can potentially increase pod and crop biomass by 44 % and 16 % respectively (Katulanda, 2011). There are several contradictory reports on the response of legumes to nitrogen application. There is a higher probability of obtaining positive response to inoculation when soil nitrate is low and legume has a high potential for growth and in the same way high soil nitrate can potentially hinder N\textsubscript{2} fixation (Peoples et al., 1995). Response of legumes to nitrogen application depends on the time of application and the rates of application (Yinbo et al., 1997). Application of N\textsubscript{2} fertilizer at the pod filling stage increases the proportion of plant N\textsubscript{2} derived from the N\textsubscript{2} fixation (Yinbo et al., 1997).
2.13.8.5 Legume contribution in biological nitrogen fixation

Symbiotic nitrogen fixation by legumes plays an important role in sustaining crop productivity and maintaining fertility of marginal lands in smallholder farming systems. The most important nitrogen-fixing symbiotic associations are the relationships between legumes and rhizobium bacteria. Leguminous plants provide the major N\(_2\) input into the biosphere as a result of their ability to convert atmospheric N (N\(_2\)) to a form that can be assimilated by plants (Hardarson et al., 2003). By providing N through fixation, legumes reduce mineral N\(_2\) inputs and the cost of production. Nitrogen fixation is variable in different grain legumes. Some legumes such as Faba bean (Vicia faba) and Lupin (Lupinus spp) are known for their effectiveness (i.e. up to 200 kg N\(_2\) ha\(^{-1}\) of their N\(_2\) in one season) under suitable field conditions, while soybean (Glycine max) can only fix on the average approximately about 100 kg N\(_2\) ha\(^{-1}\) (Hardarson et al., 2003).

Sanginga (2003), reported the use of promiscuous soybeans for the development of sustainable cropping systems in the moist Savannas of West Africa to alleviate the serious food production threat in N\(_2\) depleted soils. The actual amounts of N\(_2\) fixed by soybean and their residual N\(_2\) benefits to subsequent cereal crops varied between 38 and 126 kg N\(_2\) ha\(^{-1}\), when only seeds of soybean were removed from the plots while the net N\(_2\) accrual of soil nitrogen ranged between - 8 and + 47 kg ha\(^{-1}\) depending on soybean cultivar (Sanginga, 2003).

2.14 Need for nitrogen in soybean

A lot of contrasting reports have been published with regards to the response of legumes to nitrogen. Keyser et al (1992), reported that, as the level of mineral N\(_2\) in the rhizosphere increases, nodule formation and functioning is suppressed, apparently resulting in low
amount of nitrogen fixed. With all things being equal, higher nodulation should increase
the amount of nitrogen fixed. However, this is dependent on several environmental factors.
Panchali (2011) reported that, per adventure, the legume–rhizobium symbioses due to such
factors is not able to produce sufficient nitrogen during the early stages of growth to meet
the plant N_2 demand, then small application of mineral N_2 becomes necessary.
Sosulski et al (1989), suggested that, the high demand of N_2 by annual legumes may
require a high level of soil N_2 to achieve maximum yield. Katulanda (2011) also confirmed
a potential increase of pod and crop biomass by 44 % and 16 % respectively, in response
to nitrogen application at either vegetative or flowering stage. Kucey et al (1989), Gan et
al (2003), and Osborne et al (2006), were all in support of the use of nitrogen fertilizer to
soybean at one stage of its growth or the other to boost its production. On the other hand,
other researchers have not expressed support of N_2 use for soybean production. For
example, Peoples et al (1995), reported that, high response to inoculation in a low nitrate
soil by a legume with high potential for growth cannot be underestimated in a soil with low
nitrate content, which implies that high soil nitrate can hinder N_2 fixation.
Schmitt et al (2001), have also reported that, soybean fertilized with mineral N_2 did not
result in high grain yield and oil content. Barker and Sawyer (2005), Panchali (2011) and
Gan et al (2003), also reported that, the use of N_2 for soybean at certain growth stages
might not be advisable. The use of N_2 in soybean cannot be ruled out completely; so many
factors (time of application, fertilizer type, rate of application and environment etc.) have
to be put into consideration before conclusions can be drawn on these controversies.
2.15 Role of phosphorus in biological nitrogen fixation

Phosphorus is one of the essential nutrients for legume growth and BNF (Giller and Cadisch, 1995; Whitbread et al., 2004; Mhango et al., 2008). Phosphorus deficiency can limit nodule number, leaf area, and biomass and grain development in legumes. Symbiotic nitrogen fixation has a high P demand because the process consumes large amounts of energy (Schulze et al., 2006) and energy generating metabolism strongly depends upon the availability of P (Plaxton, 2004). Several reports have documented that nodules are a strong P sink and nodule P concentration normally exceeds that of roots and shoots (Sa and Israel, 1991; Drevon and Hartwig, 1997).

Phosphorous affects root development and hence uptake of nutrients and water. Phosphorus, apart from its effect on the nodulation process and plant growth, has also been found to exert some direct effects on soil Rhizobia (Singleton et al., 1992). Singh and Sale (2000) reported that P fertilization stimulates root growth, photosynthesis and increases hydraulic conductivity of roots. Phosphorus fertilizer application to soybean is an important step in attaining high yield under low soil P (< 10 mg kg⁻¹-Bray-1) (Aune and Lal 1997; Martin, 2005). Soybean plant requires an application of 20-30 kg P₂O₅/ha during the growing season to sustain a high crop yield in low soil P. Soil phosphorus availability during plant seedling development is an important determinant of plant growth, N₂ fixation and grain formation of soybean (Vance, 2001). Low P availability in soils results in a decrease in shoot growth, affects the photosynthetic activity, and limits the transport of photosynthates to nodules (Jakobsen, 1985) with significant decline in N₂ fixation by the plant (Israel, 1987).
There are inconsistent reports on the response of soybean to P application on highly weathered soils. Chiezey et al (1991, 1992), and Chiezey (2001), reported significant yield increase in soybean with P application on savanna soils. Similar reports were made elsewhere by other workers on soybean (Anzaku and Azanaku, 2002; Alpha et al., 2006). However, Chiezey (1999), Erhabor et al (1999), and Slaton et al (1999), reported that grain yield in soybean was not significantly influenced by P application. Kumaga and Ofori (2004) reported that, under on-farm conditions, increased application of phosphorus had quite prominent effects on nodulation and other growth and yield parameters of promiscuous soybean variety (naturally-nodulating) but it was almost the reverse in the case of non-promiscuous soybean variety (requires specific bacteria to nodulate), where only seed yield was increased. P application at 30 kgP/ha coupled with inoculation with Brady Rhizobia significantly favoured all the parameters studied, in the two varieties. The application of P in higher quantities under inoculated conditions proved beneficial only to non-promiscuous soybean variety and not the promiscuous soybean variety. A study conducted by Kamanga et al (2010), in Dowa district, central region of Malawi reported that P fertilizer increased the yield of soybean but no reasons to this positive response were revealed. The report indicates that, grain yields of P fertilized legumes were higher than yields of unfertilized treatments for soybean, pigeon pea, cowpea and groundnuts. Soybean showed response to P (20 kg/ha) with 0.5 t/ha extra grain yield than unfertilized plots. Fertilizer application increased biomass of these legumes. Soybean fertilized with P had 1.5 t/ha of biomass on top of the unfertilized treatment. Similar studies by Khonje (1994) reported that, the population of Bradyrhizobium species and Rhizobium species in soils of Malawi are not uniform such that nodulation of
promiscuous soybean will also depend on initial levels of indigenous populations of these nodule-forming bacteria.

However, the study failed to ascertain why soybean variety surprisingly reduced nodulation after application of phosphate fertilizer at one of the sites in Malawi as compared to other sites used in the study which showed positive response to phosphate fertilizer application. In spite of these inconsistencies, the importance of P in soybean cultivation has been determined by many scientists (Vance, 2001; Mahamood et al., 2009; Shahid et al., 2009; Sharma et al., 2011).

Studies in Nigeria savanna showed that uninoculated soybean required 24-39 kg P/ha at low soil P levels below critical limits to produce higher yields (Pal et al., 1989) and rhizobium inoculation increased the yield of promiscuous soybeans, particularly in soils having a low population of indigenous BradyRhizobia (Olufajo, 1990).

The soybean breeding program develops new varieties of soybeans that contribute to sustainable and profitable agriculture. High yields and valuable traits contribute to agricultural productivity. However, it is also pertinent to evaluate the newly developed varieties for their productivity and adaptability to the different agro-ecological zones characterized by different weather patterns, soil types and their responses to P fertilizer application (Chiezey et al., 2001). Soybean yields are limited by acidic and highly weathered soils low in available phosphorus. The mobility of phosphorus in soil is very limited, so soil exploration by roots is important in accessing soil P (Lynch and Brown, 2001). Olivera et al. (2004), reported that, phosphorus application to soybean increase plant biomass including nodule biomass and shoot P content due to the increased rate of nitrogen
fixation. The biological system needs energy which provides hydrogen reductant and also the energy for ATP system in nitrogenase reactions.

In Malawi, low yield of legumes grown by smallholder farmers may be strongly linked to minimal use of P fertilizer (Mwalwanda et al., 2003) among other factors, and this was also identified in studies on the response of maize to legumes and N fertilizer in central Malawi (Robertson et al., 2005). Studies have shown that there are benefits of P fertilization in legume cropping systems.

Giller (2001) reported that, the application of P fertilizer can overcome the deficiency in soils that do not strongly adsorb P. Given the high variability of soil fertility in smallholder farming systems, soil testing remains the most precise available tool to: 1) determine whether P deficiencies are the cause of low soybean yields, and 2) prescribe adequate P fertilization rates (Melgar et al., 1995).

Arable land tends to vary in soil fertility and this gives rise to varying responses to nutrient fertility management. The different crop species have varied responses to the different nutrient management interventions (Nyirenda, 1998); and thus it is worthwhile to test the response of different soybean varieties to nutrient management under on farm conditions.

Root hairs, root tips and the outermost layers of root cells are the most pathways of P entering the plants (Rotaru, 2010). Once P is inside the plant roots, phosphorus may be stored in the root or transported to the upper part of the plants (Singh and Sale, 2000). During various chemical reactions, P is integrated into organic compounds, including nucleic acids (DNA and RNA), phospho-proteins, phospho-lipids; sugar phosphate compounds like adenosine triphosphate (ATP) (Bashir et al., 2011).
Nitrogen is reduced to NH$_3$ under consumption of ATP and redox equivalents, and is associated with the formation of H$_2$ as a by-product. Thus, adding P fertilizer may reduce stress in the symbiotic relation between root bacteria and legume plant by providing this energy. The enzyme that catalyses the reaction is called nitrogenase and consists of the dinitrogenase reductase protein (Fe protein) and the dinitrogenase (MoFe protein) which actually catalyses the reduction of N$_2$.

2.16 Effect of phosphorous

Plants absorb P as either the primary H$_2$PO$_4$ ion or smaller amounts of the secondary HPO$_4$ and since the former is more abundant over the range of soils prevailing for most crops, it is usually the principal form absorbed (Russel, 1988; Tisdale and Nelson, 1975). The phosphorus (P) content of soils is low compared to nitrogen and potassium (Tisdale and Nelson, 1975; Brady, 1990). The total phosphorus content of a soil does not indicate its fertility, what is important is the amount of available phosphorus (Yayock et al., 1989). When soluble sources of phosphorus in fertilizers and manures are added to soil, they are fixed or are changed to unavailable forms and react to become highly insoluble forms (Brady, 1990).

For legumes, P enhances both nodulation and N$_2$ fixation (Israel, 1987). Phosphorus deficiency in soybean (Glycine max) can result in poor nodulation, reduced seed viability, and decreased percentage of fully developed seeds (Bishnoi et al., 2007). Borges and Mallarino (2000) speculated that, abundant rainfall during the growing season could have increased the soybean root mass at the surface, explaining a lack of response to phosphorus fertilization on low soil-test phosphorus soils for some environments. Plant growth was increased in acid soil with applied phosphorus with and without lime. This positive growth
response of haricot bean for application of P in acidic soil may be related with better availability of P as the rates of P application increased (Mesfin et al., 2014). According to Mesfin et al(2014), maximum values of plant heights, leaf and branches numbers were recorded at application rates of 30 kg P ha\(^{-1}\) in the haricot bean both with and without lime.

2.17 Effect of phosphorus on nodulation and nitrogen fixation

Phosphorus (P) is the most limiting nutrient for the growth of leguminous crops in the tropical and subtropical regions (Ae et al., 1991). Low phosphorus content of between the ranges 2-6 ppm have been reported for most savannah soils in Ghana (Nye, 1952). The effect of P on legume growth and development is a function of nutritional effects on nodulation (Gates, 1974). Nodules are strong sink for phosphorus and can increase in phosphorus concentration up to 50 % (Graham and Rosas, 1979) and dry weight up to 32.8 fold (Israel, 1987).

Cassman et al(1980), found nodule dry weight of nitrogen fixing soybean to comprise 9 % of the total plant dry weight and 61 % of root dry weight at the highest rate of phosphorus application. Dadson and Acquaah (1984) and Assuah (1990) reported that, application of phosphorus up to 60kg P/ha increased nodulation in soybean. It was observed that addition of mineral nitrogen increased the uptake of phosphorus from soil by plants and that the relative effect was greater when the level of phosphorus was low (Grunes, 1959). The effect of mineral nitrogen on phosphorus uptake has been attributed to various factors including increased root absorption capacity through increased root growth, increased cation exchange capacity of the roots, and salt effects (Grunes, 1959). White (1973) concluded that, at low levels of available phosphorus, the demand created by the plant's growth rate had an overriding influence on the rate of absorption of phosphorus by the roots whereas
at high concentrations the rate of phosphorus uptake was dependent on concentration gradient.

Nitrogen supply accelerated the turnover rate between inorganic and organic pools of phosphorus in the root due to increased rate of plant growth resulting in increased rate of transport from root to shoot.

2.18 The need for inoculation

The presence of compatible rhizobia in the soil and their effectiveness are the determining factors for the need for inoculation. Poor nodulation of soybean by indigenous *bradyrhizobia* is one of the major constraints to the successful production of soybean in Africa (Singh and Rachie, 1987). Where no soybean crop has been grown before, it is usually necessary to inoculate with an efficient *Bradyrhizobium* strain to maximize yield when fertilizer nitrogen is not applied (Dadson and Acquaah, 1984). Significant responses to *bradyrhizobial* inoculation are observed when the crop is grown in areas where it has not been previously cultivated (Abel and Erdman, 1964; Kang, 1975) and yield increases as high as six-fold have been obtained (Bromfield and Ayanaba, 1980).

In some soils where soybean has been grown previously, continued inoculation may still be necessary (Rao *et al*., 1985) apparently because of poor survival of introduced rhizobia. When the soil contains effective soybean *bradyrhizobia* or has produced adequately nodulated soybeans, inoculation may not produce significant increase in yield (Johnson *et al*., 1965; Caldwell and Vest, 1970; Ham *et al*., 1971). This lack of response occurred when the soil contained more than 103 *bradyrhizobia* per gram of soil (Weaver and Frederick, 1974; Singleton *et al*., 1992). However, when the soil contained ineffective *bradyrhizobia*, application of effective *B. japonicum* in the inoculant produced much greater proportion of
nODULES E ven if the population of the effective strains was comparatively low (Robinson, 1969). Introduced inoculant strains must exhibit both saprophytic and symbiotic superiority, relative to indigenous strains, if they are to maintain yields in the absence of continued inoculation (Fuhrman and Wollum, 1989).

The Joint FAO/IAEA Programme of coordinated research showed that inoculation with a suitable strain of *rhizobium* at sowing was the single most useful agronomic practice in ensuring maximum legume yield (Gudni et al., 2003). Since the desired type of N$_2$-fixing micro-symbiotic may not exist in the required amounts in a given soil, inoculation with an appropriate strain suited for a specific crop and soil conditions is often required (Gudni et al., 2003). The use of inoculation is therefore necessary when legumes are introduced into new regions.

However, Giller (2001) reported that, if the introduced legume crop can nodulate effectively with rhizobia that are present in the soil in sufficient numbers, then inoculation may not be necessary. The inoculation technology comes in different forms; powder or granular forms are common. The powder form is applied directly to the seeds before planting. The common problems with inoculations are their poor competitiveness with local strains; sensitivity to climatic and other stresses limiting their viability and number; and problems of packaging, transport and storage until end-use on the farm (Smith 1987; Bantilan and Johansen, 1995). Without refrigeration, the live microbial culture loses its potency fast making the use of the inoculants a difficult option under smallholder farming conditions in the tropics, especially in the rural communities (Smith 1987; Bantilan and Johansen 1995; Singleton et al., 1997; Montanez 2000).
This notwithstanding, inoculums have often been used to increase the number of desirable strains of rhizobia in the rhizosphere (Lupwayi et al., 2000). Fening et al., (2002) confirmed that only 6 % of the indigenous rhizobia across Ghanaian soils are highly effective with 68 % and 26 % being moderate and ineffective, which therefore necessitate the need for the use of inoculation in Ghanaian soils. Therefore, inoculation at times can be used as a form of insurance against crop failures. Deaker et al (2004), and Herridge et al (2002), reported that, less problem is associated with over inoculation rather than not inoculating at all.

2.19 Effect of interaction of phosphorus and inoculation on nodulation, growth and seed yield of soybean.

The P content of the soil affects the efficiency of seed inoculation. Both P and inoculation work in the same direction as far as nitrogen fixation is concerned (Dhingrah et al., 1988). In savannah soils where lack of phosphorus fertilization had a limiting effect on nodulation and yield, maximum benefit was derived from biological nitrogen fixation and maximum productivity when phosphorus fertilizer was applied (Olufajo and Adu, 1992). Olufajo and Adu (1992) and Raychaudhuri et al(1997), found significant interaction between inoculation and phosphorus on nodule dry weight of soybean at the flowering stage. Similar interaction between inoculation and phosphorus on seed protein of soybean has been reported by Dadson and Acquaah (1984).

Apart from soybean, interaction between inoculation and phosphorus has been reported for other legumes. For instance, Giller et al(1989), found that, inoculation together with phosphorus gave an increase in nodulation and nitrogen uptake of beans. In poor soil, Cobbina et al(1992), reported that, inoculation of *Leucaena leucocephala* with rhizobia
and fertilization with P increased shoot N₂ content and a combined application of rhizobia and P fertilizer was as effective as fertilization with both P and N₂. Similar findings have been reported by Luyindula and Haque (1992) on Sesbania and Leucaena. Dhingrah et al (1988), also found that interaction between phosphorus and inoculation on lentil was significant and a combination of Rhizobium and 20kg P₂O₅/ha gave yields equivalent to 40kg P₂O₅/ha without Rhizobium inoculation.

2.20 Effect of nitrogen and phosphorous on nodulation, growth and yield of soybean

Phosphorous is an essential mineral nutrients required in relatively large amounts to maintain plant growth. It plays a major role in improving crop yield and quality (Raghotham, 1999; Abel et al., 2002). Plant height, grain yield, biomass yield and P uptake efficiency of soybean increases at high levels of P application (Sahoo and Panda, 2001; Manjeet et al., 2011). Phosphorous and potassium deficient plants often have slow growth, poor drought resistance, weak stems and are more susceptible to lodging and plant diseases (Jack and Sarah, 2001).

The application of P on soybean increases the amount of N₂ derived from the atmosphere by the soybean-Bradyrhizobium symbiotic system (Chien et al., 1993; Sanginga et al., 1996). Nitrogen nutrition in soybean is ensured by denitrogen fixation and mineral nitrogen assimilation, which is important for high vegetative growth, high productivity and high seed protein content of soybean (Ronis et al., 1985). Only 25 to 65 % of N₂ in soybean dry matter originates from symbiotic nitrogen fixation, the remainder comes from soil N₂ (Harper, 1974). Varvel and Peterson (1992) noted that, soybean plants act as sinks for soil N₂ and effectively use N regardless of source.
Therefore, N₂ fertilization could benefit soybean. Helms and Watt (1991), also found out that N₂ fertilization of soybean increases seed protein or oil concentration. Starter N₂ application is aimed at providing soybean with readily available soil N₂ during seedling development, and has been shown to increase soybean grain yield (Touchstone and Rickerl, 1986).

2.21 Lime

Lime are materials containing carbonates, oxides or hydroxides required to apply in acid soils to raise soil pH and in addition neutralize toxic elements in the soil. Soil pH is used to determine whether or not to lime a soil (TSO, 2010). Liming materials include CaCO₃, Ca, Mg(CaCO₃)₂, Ca(OH)₂, CaO and others, which vary according to their neutralizing value and degree of fineness (TSO, 2010). When lime is applied to the soil, Ca²⁺ and Mg²⁺ ions displaces H⁺, Fe²⁺, Al³⁺, Mn⁴⁺ and Cu²⁺ ions from soil adsorption site resulting in increase in soil pH. Other than increasing soil pH, lime also supplies significant amounts of Ca and Mg, depending on the type. Indirect effects of lime include increased availability of P, Mo and B, and more favourable conditions for microbially mediated reactions such as nitrogen fixation and nitrification, and in some cases improved soil structure (Nekesa et al., 2005). For instance, application of lime significantly increased root and shoot yields in Nigeria (Anetor and Akinrinde, 2006), grain yields of soybean in Brazil (Kassel et al., 2000; Caires et al., 2006). Similarly, in Croatia Andric et al (2012), reported increased soybean yield by 44 % as a result of lime application. Moreover, Nekesa et al (2011), in Western Kenya also found positive response of soybean grain yield to lime application either alone or combined with P fertilizer.
2.22 Combined effects of p fertilizer and lime

The importance of applying fertilizers in organic or inorganic form has been proven in various researches. However, use of manures alone has a slow but positive effect in releasing nutrients since they require microbial activity to decompose it. On the other hand, mineral fertilizers are of rapid nutrient availability but expensive and are easily leached from the soil. However, application of combined organic and inorganic fertilizers is a viable solution to restore, maintain soil fertility and increase crop yields (Danga et al., 2010; Sharief et al., 2010). Maheshbabu et al (2008), in India found that, combination of FYM and mineral fertilizer had a significant effect not only on soybean grain yield but also on its growth parameters. Also, Anetor and Akinrinde (2006), in Nigeria found that combined lime and organic fertilizer had a significant effect on the number of pods, pod weight and seed number of soybean. Similarly, in western Kenya, Nekesa et al (2011), found that combined Diamonium Phosphate (DAP) or TSP and lime increased significantly soybean grain yields. Combined organic and inorganic fertilizers have also been reported to increase soybean yield by 12.9 % in India (Maheshbabu et al., 2008), 19 % in Indonesia relative to sole application of inorganic fertilizer (Yamika and Ikawati, 2012), and 50 % against sole application of organic fertilizer (manure) (Zerihun et al., 2013).

2.23 Effects of lime and phosphorus fertilizers on soil chemical properties

Soil chemical properties include pH, exchangeable acidity (H, Al) and exchangeable bases (Ca, Mg, K and Na). These properties influence availability of nutrients to crop, and therefore have potential to reduce or increase crop yields. Application of soil amendments leads to improvement in soil chemical properties creating favourable conditions for crop nutrition, development and yield. In a comparative study of organic manures and NPK
fertilizer in acids oil, Adeniyan et al. (2011), found that, 5 tonnes/ha\(^{-1}\) of cattle manure significantly increased soil available P, pH, organic C and cation exchange capacity. Kheyrodin and Antoun (2012), found that, manure increased significantly soil P, Ca and Mg contents in the 15–30 cm depth.

Application of 2 tonnes per hectare of lime decreased exchangeable Al, and increased pH, available Ca and Mg in Cameroon (The et al., 2001). Lime and P fertilizers significantly improved soil pH and available P as reported by Anetor and Akinrinde (2006), who also attributed increased soil pH with lime which in turn reduced P fixation. Repsiene and Skuodiene (2010) found that, lime and manure when applied sole or combined had a significant effect in reducing Al, increasing Ca, pH, and Mg. Ademba et al. (2010), reported significant increase in soil total P, K, Ca, Mg with sole application of 10 tonnes per hectare of manure, 60 kg P\(_2\)O\(_5\) ha\(^{-1}\) and 250 kg ha\(^{-1}\) of lime. In addition, the same study revealed that, lime and manure combined with DAP increased available P. In Nigeria, Ewulo (2005) found that, application of 6 tonnes per hectare of cattle manure increased total soil P, K, Ca, Mg and cations exchange capacity (CEC), and decreased exchangeable acidity. Improved physicochemical properties of acid soils have been reported through combination of manure with N, P fertilizers and lime (Onwonga et al.2010). The improvement was attributed to the integrated effect of the amendments by improving soil pH, microbial activity, nutrient release from organic matter decomposition and improved soil structure as well. In addition, Kisinyo et al. (2012), reported significant positive effects on soil pH and available P in acid soil of Western Kenya, with application of lime and P fertilizer in sole or in combination.
2.24 Effect of lime and P fertilizer on N, P uptake and N$_2$ fixation of soybean

2.24.1 Nitrogen and phosphorus uptake by plants

Nitrogen is a macronutrient also known as vegetative nutrient and mostly used by the plants and therefore, an important nutrient for soybean grain yield (Kamara et al., 2011). However, availability of N$_2$ is highly affected by soil acidity and leaching. Acidity tends to reduce microbial mediated processes that result in poor organic matter decomposition, mineralization of nitrogen and consequently low N$_2$ availability. Application of soil acidity amendments may improve soil conditions for mineralization to take place and increase N$_2$ availability in the soil, its uptake and finally positive influence on increasing crop yield.

In Bangladesh, Jahangir et al (2009), reported increased N uptake by soybean under P fertilizer application. Similarly, in India, Sharma et al (2011), found significant increase uptake of N in soybean under P fertilizer application. Additionally, Schmitt et al (2001), found that, application of manure increased significantly N$_2$ uptake by soybean. Son et al (2001), in a farmer’s field experiment under moderate acidic soil also reported that application of organic resources alone and combined with inorganic resources recorded 5.81 % and 5.83 % N$_2$ content, respectively, in the soybean grain. In addition, Tagoe et al (2008), found increased 10.1 % and 40.6 % in seed and plant total N$_2$ content as affected by application of manure respectively. Application of lime increased soil pH and favoured nitrogen fixation where N$_2$ concentration in the plant was increased significantly by 3.1 % as reported by (Caires et al., 2006).

Phosphorus is an important plant macronutrient, making up to about 0.2 % of a plant’s dry weight (Schachtman et al., 1998). Phosphorus is present in seed and fruit in large quantities and is essential for seed formation. Phosphorus has also been reported to be root growth
stimulant and it is associated with early crop maturity (Abbas et al., 2011). In acidic soils, most plant nutrients tend to be unavailable, but lack of P is said to be the one that largely affects crop growth, absorption of water and other nutrients hence low crop yields (Crawford et al., 2008). Application of manure, lime and P fertilizers improve soil chemical, physical and biologic properties. They reduce P fixation by Al and iron (Fe) oxides in the soil, and increase availability of P, which increases its uptake by crop (Crawford et al., 2008; Kisinyo et al., 2012).

Anetor and Akinrinde (2006), reported 65.6 % increase in P uptake by early growing soybean variety with application of lime (2 tonnes ha\(^{-1}\)). This was attributed to increased availability of P in the soil, enlarged proliferation of roots and to reduction of Fe and Al activity in the soil.

2.24.2 Effects of lime and P fertilizer on soil microbial biomass

The Soil Microbial Biomass (SMB) is the active component of the soil organic pool, playing an important role in nutrient cycling, plant nutrition and functioning of different ecosystems. It is responsible for organic matter decomposition thus affecting soil nutrient content (Onwonga et al., 2010). As such, the biomass is both a source and sink of the nutrients C, N, P and S contained in the organic matter (Lin et al., 2010; Basu et al., 2011). Soil microorganisms are significant determinants of organic matter decomposition, soil nutrient status, crop health, and overall crop productivity (Basu et al., 2011). Soil MB is undoubtedly a valuable tool for understanding and predicting changes in soil fertility management and associated soil conditions such as nutrient dynamics and soil reactions (Sharma et al., 2004). However, changes in soil conditions (plant or animal residues) will determine how fast the microbial biomass responds (Onwonga et al., 2010).
Therefore, understanding soil microbial biomass dynamics is particularly critical in the management of acid soils, to reverse declining soil organic matter content and to restore soil fertility. Soil amendments have been used and reported as improving SMB.

Growth analysis

Plant growth analysis is an explanatory, holistic and integrative approach to interpreting plant form and function. It uses simple primary data in the form of weights, areas, volumes and contents of plant components to investigate processes within and involving the whole plant (Evan, 1996; Hunt, 1978). The most common growth functions are crop growth rate (CGR), leaf area index (LAI), leaf area duration (LAD), net assimilation rate (NAR), leaf area ratio (LAR) and relative crop growth rate (RCGR). These are normally calculated from total shoot dry weights and leaf area indexes recorded over a given period (Clawson et al., 1986).

Crop growth rate is a dynamic character that determines the final yield in cereal and legume crops. Ball et al (2000), have reported that, high population of soybean ensures early canopy closure, maximizes light interception, crop growth rate and crop biomass, resulting in increased yield potential. Crop growth rate depends on LAI and NAR, the later depending on light-intercepting efficiency and photosynthetic efficiency of the leaf (Kokubun, 1988). Increasing plant population reduces the amount of time that, it takes to reach 95 % light interception levels that correspond to LAI levels of 3.2 to 3.5 (Higley, 1992).

Pod and seed number are the most important yield components of soybean. However, leaf area index, leaf area duration and dry matter accumulation during the reproductive period strongly influence the yield components (Liu et al., 2004). Malone et al (2002), have
reported that, leaf area index values of at least 3.5-4.0 in the reproductive stages are required for maximum potential yield of soybean.

Stern and Donald (1961), stated that, leaf area index influences crop growth rate, and that dry matter production by a crop also increase as the leaf area index increases until a maximum value is attained; thereafter as the leaf area index increases further, the rate of dry matter production will decline. This is because; the lowermost leaves become heavily shaded that, photosynthetic contribution becomes less than respiration.

2.26 Agricultural importance of leguminous crops

The term "grain legumes" or "pulses" refer to leguminous plants producing dry edible seeds (Howieson et al., 2000). Major grain legume species traditionally grown in the tropics include cowpea (Vigna unguiculata (L.) Walp.), black gram (V. mungo (L) Hepper), green gram (V. radiata (L.) Wilczek), common bean (Phaseolus vulgaris (L.)), lima beans (P. lunatus), pigeon pea (Cajanus cajan (L.) Mill sp.), groundnut (Arachis hypogaea L.), bambara nut (Vorandzeia subterranean L.), chick pea (Cicer arientum L.) and soybean (Glycine max (L.) Merr.) (Raemaekers, 2001).

Grain legumes are well known to contribute significantly towards reducing poverty, improving food security, improving nutrition and health, and sustaining the natural resource base (Rusike et al., 2013). Biological Nitrogen fixation (BNF) abilities of legumes is an important method for sustainable crop-land management and is a very good source of providing N to plants under favourable atmospheric and environmental conditions (Hungria and Vargas, 2000; Chen et al., 2002). Mahamood et al (2009), reported that, soybean is a crop which has been proposed for the removal of the acute shortage of protein and oil worldwide.
The ability of legumes to fix atmospheric N\textsubscript{2} in symbiosis with Rhizobia strains makes them excellent colonizers of low-N environments (Graham and Vance, 2003). However, Rhizobia strains differ in their N\textsubscript{2} fixation efficiency and effectiveness. Likewise, grain legumes vary in their N\textsubscript{2} contributions to cropping systems depending on the proportion of plant N removed in harvested seed and that from fixation (Salvagiotti et al., 2008). The efficiency of the legumes to fix N biologically is affected by various factors such as soil moisture, temperature, available soil nutrients, biotic and abiotic stresses and the presence of efficient, competitive Rhizobia strains, cropping systems and field management practices (Thies et al., 1995; Palmar and Young, 2000; Kiers et al., 2003). Ojiem et al. (2007), Nyemba and Dakora (2010) and Mhango (2011) reported 22 to 124 kg/ha of total N fixed by groundnut under different cropping systems while Adu-Gyamfi et al (2007), reported biological N\textsubscript{2} fixation of 20 to 118 kg/ha by pigeon pea. Common bean ranks low compared to most other legumes with reported N\textsubscript{2} fixation of less than 31 kg/ha/year (Hardarson et al., 1993; Ojiem et al., 2007). Efforts to optimize nodulation and BNF in grain legumes are critical challenges because of widespread increase in soil degradation in Africa.
CHAPTER THREE

3.0 MATERIALS AND METHODS

3.1 Study area

The experiment was conducted between October 2015–April 2016 in-front of the greenhouse of the University for Development Studies at Nyankpala in the Tolon District of the Northern Region of Ghana. Nyankpala is located at an altitude of 183m above sea-level, and latitude 09 25’ and 00 58’ longitude of the equator. It has a monomodal rainfall pattern with annual mean rainfall of 1000 – 1200mm which is fairly distributed from April-November (SARI, 2004). Temperature distribution is uniform with mean monthly minimum of 21.9 °C and maximum of 34.1 °C. It has a minimum relative humidity of 53 % and a maximum of 80 % (SARI, 2004).
3.2 Experimental design and lay-out

The experiment was laid in a split-plot design, with four replications. The main plot factor was lime (Calcium Carbonate, Oil palm leaf ash and Control) and the sub-plot factor was soil amendments (Phosphorus at 148kg/ha TSP, Inoculant at 5g/1000/seed, Phosphorus at 148kg/ha TSP-Inoculant AT 5g/1000/seed and Control). Each replication consisted of twelve pots and a total of forty eight pots were used for the experiment.

3.3 Soil sampling

Soil samples were taken from three sites namely farms behind the fence of SARI main office, farming for the future Garden of UDS and farms in-front of the UDS library. Purposely sampling was used to identify the farms that have records of soil acidity and simple random sampling was used to pick soil samples from the three selected sites. Twenty core soil samples were taken with soil auger and samples were collected at the depth of 0 – 15 cm. Samples were put in black polybags and packed in a box and transported to SARI soil laboratory for analysis.

3.4 Filling of pots

Soil taken from the farm behind the fence of SARI main office were dried under room temperature and sieved using a 2 mm sieve. The sieved soils were then filled into the pots at 10 Kg per pot. Four (4) pots each were filled with soil incorporated with calcium carbonate (CaCO₃) as inorganic liming material, oil palm leaf ash as organic liming material and Control. CaCO₃ was applied at the rate of two tonnes per hectare and same amount was applied for the oil palm leaf ash. At this liming rate, the amount of lime that was applied was 18g per pot at a crop spacing of 60cm x 10cm with two plants per stand.
3.5 Inoculation of seeds

The inoculant (*Bradyrhizobium japonicum*) was obtained from IITA and applied at the rate of 10 g inoculant/1kg seed. Water was used to moisten the seeds to ensure that all the applied inoculum stick to the seed and the required quantity of inoculant was suspended in 200ml of water. The inoculant was gently mixed with moist seeds so that all the seeds received a thin coating of the inoculant. All inoculation was done just before planting under shade to maintain the viability of bacterial cells. Seeds were allowed to air dry for a few minutes and were then sown at the required rate and spacing. Pots with un-inoculated seeds were planted first to avoid contamination. Seeds were immediately covered with soil after sowing to avoid death of bacterial cells.

3.6 Agronomic practices

Planting was done first week of December, 2015 with three seeds per hole and the holes were fairly covered with soil to ensure good grip of seed-soil environment. The seeds were later thinned to two plants per hole at a crop spacing of 60 cmx10 cm. Manual weeding was done at any time weeds were seen on the pots to avoid competing with the soybean plants. They were removed by hand and regular watering was carried out to prevent wilting of plants and keeping the required moisture content for proper growth of the soybean plants. Liming and inoculation was done before planting was carried out. Phosphorus applied at the rate of 148Kg per hectare of Triple Supper Phosphate (TSP) and 1.33g of TSP fertilizer was applied per pot. Harvesting and threshing of the soybean were done in April, 2016.
3.7 Soil analysis

3.7.1 Soil pH

A 20 g soil sample was weighed into a 100 ml plastic beaker and 50 ml of distilled water was added to the soil sample. The solution was stirred thoroughly and allowed to stand for 30 minutes. The pH meter was calibrated with buffer solutions at pH 4.0 and 7.0 and the pH of the soil was read by immersing the electrode of the meter into the upper part of the suspension. The pH of the soil sample was recorded.

3.7.2 Total nitrogen

Nitrogen level in soil was analyzed by taking a small amount of the soil sample mixed with universal extracting solution. The extracting solution removes minerals from the soil and soil was filtered from the suspension. The soil solution was tested with nitrate test reagents. A colour change in the solution occurred which was used to compare to standards printed colour chart. The same procedures were used for phosphorus and potassium levels in soil but phosphorus and potassium test reagents were used respectively. Colours changes were used to compare to standards printed on a colour chart for determination of the various level of the phosphorus and potassium in the soil. Ammonium acetate extractable levels of these elements as described by (Walworth, 2011) was used to determine the major exchangeable cations (K, Ca, Mg, and Na) using units of cmol/kg.

3.7.3 Available phosphorus

The readily acid-soluble forms of phosphorus were extracted with Bray No.1 solution. (HCl: NH₄ F mixture) (Bray and Kurtz, 1945; Oslen and Sommer, 1982). Phosphorus in the sample was determined on a spectrophotometer by the blue ammonia molybdate with ascorbic acid as a reducing agent. A 5g soil was weighed into 100ml extraction bottle and
35ml of Bray’s no.1 solution (0.03M NH₄F and 0.025M HCl) was added. The bottle was placed in a reciprocal shaker and shaken for about 10 minutes and filtered through Whatman No.42 filter paper. An aliquot of 5ml of the filtrate was pipetted into 25ml flask and 10ml colouring reagent (ammonia paramolybdate) was added followed by a pinch of ascorbic acid.

After mixing well, the mixture was allowed to stand for 15 minutes to develop a blue colour. The colour was measured using a 21D spectrophotometer at 660 nm wavelength. The available phosphorus was extrapolated from a standard curve.

3.8 DATA COLLECTED

3.8.1 Determination of plant height

To evaluate the effect of the treatments on soybean growth and development, three plants per pot were randomly selected and tagged before harvest and their heights measured using a tape measure at week 5, 8 and 11. Plants were measured between the highest photosynthetic tissue and ground level (Cornelissen et al., 2003).

3.8.2 Number of leaves per plant

At 5, 8, and 11 WAP, number of leaves per plant per pot were taken and each plant was counted and recorded.

3.8.3 Leaf area index

Leaf area index (LAI) was determined at 5, 8 and 11 WAP. This was done by detaching all opened leaves from six sampled plants from each pot. Ten (10) leaves were picked from pot were weighed and their fresh weight recorded. A cork borer of 0.01 m was
diameter used to punch through ten leaves after sticking them together and the circular
disc of leaves were recorded. The leaf area index was then calculated using the relation:

\[
\text{Leaf Area Index} = \frac{\text{Leaf area}}{\text{Ground cover}}
\]

3.8.4 Days to 50 % flowering

Plants were monitored closely to count the number of days taken for half of the plants in a
pot to flower. The date was recorded as days to 50 % flowering.

3.8.5 Number of nodules per plant

Six soybean plants at twelve weeks after planting were carefully uprooted from each
experimental pot by digging around the plant using a spade and washed with clean tap
water to remove all attached soil from the roots and the nodules. The nodules were then
detached from the roots and counted.

3.8.6 Effective nodules

Six soybean plants at twelve weeks after planting were carefully uprooted from each
experimental pot by digging around the plant using a spade and washed with clean tap
water to remove all attached soil from the roots and the nodules. The nodules were then
detached from the roots and a blade was used to cut the nodules to observe the nodule
colour for effectiveness or non-effective nodules and the record was taken.

3.8.7 Determination of shoot fresh and dry weight

Six plants from each pot that was used for nodule count was used for the fresh weight of
the soybean plant. The root system of the plant was cut off and weighed to determine the
fresh weight of the plant. These plants were put into envelopes and dried in an oven at 70 °C for 72 hours. The dry weights of the shoots were weighed and recorded.

3.8.8 Days to podding and number of pods per plant

Plants were monitored daily after first flower appeared in the experiment to observe the first plant on which pods were formed. The date on which a first pod was found on a plant was recorded and used to estimate the number of days the pods were formed. A week to harvesting, number of pods on each plant was counted.

3.8.9 Grain yield

All plants at maturity, their pods were harvested and threshed and seeds obtained were weighed in grams per pots yield. This was converted into kilograms per hectare and recorded for analysis.

3.10 Statistical analysis

A split-plot analysis of variance (ANOVA) was used to analyze data collected. The analysis was done using Statistical software program GENSTAT version 10.3DE. Means were separated using least significant difference (LSD) at $p < 0.05$ and the results shown in Tables or Figures.
CHAPTER FOUR

4.0 RESULTS

4.1 Soil chemical analysis

The pH, Ca$^{2+}$, K$^+$, Na$^+$, Total Extractable Bases, Exchangeable acidity, Cation Exchange Capacity and % Base Saturation differed significantly (p < 0.05) with soil treated with liming materials except for N$_2$, organic carbon, organic matter and Mg$^{2+}$ which were not significant (p < 0.05). The Ash Control consistently produced the highest soil properties while Main Control and CaCO$_3$ Control produced similarly low amount of soil properties in the soil analysis except in Ca$^{2+}$ and pH (Table 4).

Soil samples analyzed, indicated the soil was acidic and sandy in nature. The nitrogen, phosphorus and potassium levels were low but potassium level and pH value went up after the application of the liming materials to the soil (Table 4.). Soils with poor fertility status and sandy loam soils need soil amendments such as CaCO$_3$ and Ash to improve upon the nutrients release of the soils for the proper growth and development of crops.
Table: 4 Some Soil Properties Influenced By Liming

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Soil Physical and Chemical properties</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ash Control</td>
<td>pH 7.5b, Ca²⁺ 2.8a, K⁺ 18b, Na⁺ 1.30a, Mg²⁺ 1.70a, T.E.B 24.0b, Ex.A 0.05b, CEC 24.0b, %B.S 99.8a, %N2 0.05a, %O.C 0.56a, %O.M 0.96a, Av P 9.8a</td>
</tr>
<tr>
<td>CaCO₂ Control</td>
<td>pH 8.5c, Ca²⁺ 8.2b, K⁺ 0.7a, Na⁺ 0.42a, Mg²⁺ 1.00a, T.E.B 10.0a, Ex.A 0.04a, CEC 10.3a, %B.S 99.7a, %N2 0.042a, %O.C 0.48a, %O.M 0.83a, Av P 12.3a</td>
</tr>
<tr>
<td>Main Control</td>
<td>pH 6.3a, Ca²⁺ 2.2a, K⁺ 0.6a, Na⁺ 0.40a, Mg²⁺ 0.80a, T.E.B 4.0a, Ex.A 0.13c, CEC 4.1a, %B.S 97.3b, %N2 0.05a, %O.C 0.60a, %O.M 1.04a, Av P 16.2a</td>
</tr>
</tbody>
</table>

p-value	0.001, 0.001, 0.013, 0.11, 0.12, 0.03, 0.001, 0.03, 0.001, 0.25, 0.25, 0.25, 0.72
LSD	0.64, 1.82, 11.0, 0.94, 1.23, 13.6, 0.023, 14.0, 0.45, 0.014, 0.16, 0.27, 18.8
CV	5, 24.0, 99.2, 81.0, 63.0, 62.4, 21.0, 62.1, 0.3, 16.6, 16.6, 16.6, 85.3

Values (mean±se) with dissimilar letters in a column are significantly different at p ≤ 0.05.
4.2 Plant height

Plant height was recorded at three different stages of growth (5, 8 and 11 WAP). There was significant effect ($p = 0.020$) of liming and soil amendments on the plant height of the soybean plants. Liming with CaCO$_3$ increased plant height by about 80% over Ash and Control (Figure 1). However, plant height remained greater throughout the experiment with the CaCO$_3$ treated pots over Ash and Control, but the plant height of Ash was significantly higher than Control.

![Figure 1: Effect of liming on plant height at 5 to 11 WAP. Bars represent standard error of differences (SED).](image)

Plant height was significantly ($p < 0.001$) influenced by soil amendment. In all the three timing of measurement of plant height, phosphorus consistently did well than the rest of the amendments used. The use of phosphorus fertilizer resulted in increased plant height
by about 25% over the use of phosphorus-inoculation, Inoculation and Control at the three timing of measurement (5, 8 and 11 WAP). At 11WAP, Inoculated plants, inoculated-phosphorus and Control gave similar plant height (Figure 2).

Figure 2: Effect of soil amendment on plant height at 5 to 11 WAP. Bars represent standard error of differences (SED).

4.3 Number of leaves per plant

There was no difference (p = 0.201) in the number of leaves per plant at 5 and 11 WAP when different liming materials were applied to the soybean plants. However, number of leaves per plant differed significantly (p = 0.047) with soybean plants treated with different liming materials at 8 WAP. The CaCO₃ consistently produced the highest number of leaves at the three timing of measurement of number of leaves per plant whilst Control and Ash produced similar results at 5 WAP but differed significantly at 8 WAP with low number of
leaves. However, at 11 WAP, Ash recorded a reduction in the number of leaves per plant compared to Control which recorded a higher number of leave per plant (Figure 3).

![Figure 3: Effect of liming on the number of leaves per plant at 5 to 11 WAP. Bars represent standard error of differences (SED).](image)

Soil amendment affected the number of leaves per plant significantly (p = 0.008) at 5 WAP and 8 WAP but no significant differences was recorded at 11 WAP. Phosphorus treated plants consistently recorded the highest number of leaves per plant by about 58 % while Control, Inoculation, and Phosphorus-Inoculation recorded similar but low number of leaves as compared to Phosphorus application throughout the experimental period (Figure 4).
4.4 Leaf area index

At 5 WAP, there was no interaction effect between liming and soil amendment. However, liming (p < 0.001) and soil amendment (p < 0.002) significantly affected leaf area index (Figure 5). There was significant (p < 0.001) effect of liming and soil amendments as well as the interaction effect of liming and soil amendment on the leaf area index of the soybean plants at 8 and 11 WAP. Plants grown with CaCO$_3$ treated plants recorded higher leaf area index over Ash and Control.

Figure 4: Effect of soil amendment on the number of leaves per plant at 5 to 11 WAP. Bars represent standard error of difference (SED).
Leaf area index was significantly (p < 0.002) influenced by soil amendment. In all the three timing of measurement of leaf area index, phosphorus fertilizer treatment did better than the other soil amendments used throughout the experiment (figure 6). As stated above, phosphorus did well throughout the experiment followed by Phosphorus-Inoculation, Inoculation then Control but at 8 and 11 WAP, Control recorded a better leaf area index than Inoculation.
Figure 6: Effect of soil amendment on leaf area index at 5 to WAP. Bars represent standard error of difference (SED).

4.5 Fresh straw weight

There was significant (p < 0.001) effect of liming and soil amendment used as well as the interactive effect of liming and soil amendment on the fresh shoot weight of soybean plants. Plants grown with CaCO₃ incorporated with Phosphorus recorded about 80% fresh shoot weight over Ash and Control in different liming treatments. However, Control treated soybean plants recorded the highest fresh shoot weight when plants were treated with different soil amendments (figure 7).
Figure 7: Effect of liming on fresh shoot weight of plants. Bars represent standard error of difference (SED).

4.6 Dry straw weight

Dry shoot weight (biomass) varied significantly (p < 0.001) among liming materials treated to soybean plants on the field (Figure 8). The application of CaCO₃ to soil significantly increased the shoot dry weight by about 86%. Control and Ash treated soybean plants shoot dry weight was significantly lower when compared to the application of CaCO₃ to the soil but Ash treated soybean plants dry weight were more than Control treated soybean plants.
Figure 8: Effect of different soil amendment on dry shoot weight of soybean plants. Bars represent standard error of difference (SED).

Dry shoot weight was significantly ($p < 0.001$) influenced by soybean plants treated with different soil amendment. The use of Phosphorus fertilizer resulted in increased dry shoot weight by about 13% over the use of the other soil amendments. Inoculated plants produced similar dry shoot weight to Inoculation-Phosphorus when soybean plants were treated with different soil amendments. Control recorded the least weight of dry shoot weight among the different soil amendment treatments used (Figure 9).
Figure 9: Effect of soil amendment on dry straw weight of plants. Bars represent standard error of difference (SED).

4.7 Days to 50 % flowering

There was significant ($p = 0.029$) interaction among treatment in different liming materials and soil amendment. CaCO$_3$ treated plants recorded shorter days to flowering and Control registered the longest number of days to 33.3 % flowering within the liming materials. Inoculation-Phosphorus and Phosphorous treated plants recorded few days to flowering in the soil amendment treatment whilst Control and Inoculation recorded the longer days to 50 % flowering (figure 10).
Figure 10: Effect of liming and soil amendment on days to 50% flowering. Bars represent standard error of difference (SED).

4.8 Days to podding

The number of days to podding among treatments varied significantly (p < 0.001) among the liming materials and soil amendment in the experiment (Table 5). Shorter days to podding were observed in CaCO₃ treated plants and Ash recording the highest days to podding with the different liming materials. Phosphorous treated plants within the soil amendment treatments recorded shorter days to podding, and Control and Inoculation recorded the higher number of days to podding which was same.
4.9 Number of nodules

There were significant (p ≤ 0.05) effects of liming and soil amendment on the number of nodules formed by the soybean plants. However, the interactive effect of liming and soil amendment was not significant (p ≥ 0.05) for the number of nodules. When soybean plants were treated with different liming materials, higher number of nodules was recorded with soils incorporated with CaCO₃ over Ash and Controls (Table 5).

Number of nodules per plants produced similar results with Inoculation and Phosphorus +Inoculation among soil amendment treatment. Soybean plants treated with either Inoculation or Phosphorus-Inoculation produced more nodules compared to Control and Phosphorus (Table 5).

4.10 Effective nodulation

Number of effective nodulation was significantly different (p < 0.001) among liming materials and soil amendment treated plants. Soybean plants treated with different liming materials produced higher number of effective nodulations in soils incorporated with CaCO₃ over Ash and Control. Plant treated with inoculant performed significantly higher than Control and Phosphorus among soil amendment treatments. Inoculation application gave the highest effective nodulations similar to Inoculation-Phosphorus treatment and lowest numbers of nodules were recorded by Control and Phosphorous treatments (Table 5).
Table 5: Effects of Liming and Soil Amendments on days to Podding, Number of nodules and number Of Effective Nodules. Values (Mean) with dissimilar Letters in a column are significantly different at P ≤ 0.05.

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Parameters</th>
<th>Days to 50 % flowering</th>
<th>Number of nodules/plant</th>
<th>Effective nodules</th>
</tr>
</thead>
<tbody>
<tr>
<td>Liming</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ash</td>
<td>77.31a</td>
<td>14.81c</td>
<td>10.81b</td>
<td></td>
</tr>
<tr>
<td>CaCO₃</td>
<td>66.6b</td>
<td>26.3a</td>
<td>18.9a</td>
<td></td>
</tr>
<tr>
<td>Control</td>
<td>70.6a</td>
<td>18.3b</td>
<td>14.6b</td>
<td></td>
</tr>
<tr>
<td>Soil amendment</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control</td>
<td>71.8a</td>
<td>15.4a</td>
<td>11.1b</td>
<td></td>
</tr>
<tr>
<td>Inoculation</td>
<td>73.6c</td>
<td>22.4b</td>
<td>17.8a</td>
<td></td>
</tr>
<tr>
<td>Phosphorus</td>
<td>69.3b</td>
<td>19.2b</td>
<td>12.6b</td>
<td></td>
</tr>
<tr>
<td>Phosphorus-Inoculation</td>
<td>71.5a</td>
<td>22.3a</td>
<td>1.5a</td>
<td></td>
</tr>
<tr>
<td>Liming</td>
<td>460.2***</td>
<td>7.2**</td>
<td>9.5**</td>
<td></td>
</tr>
<tr>
<td>Soil amendment</td>
<td>72.3***</td>
<td>14.8***</td>
<td>19.1***</td>
<td></td>
</tr>
<tr>
<td>Liming *Soil amendment 2.4 ns</td>
<td>1.7 ns</td>
<td>1.4 ns</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*** indicate significant different at p ≤ 0.05 and ns indicate not significant at p ≥ 0.05
4.11 Grain yield

There was a significant (p < 0.001) effect of liming and soil amendments as well as the interaction effect of liming and soil amendment on the grain yield of soybean plants. Plants grown in CaCO₃ treated with phosphorus soil amendment increase grain yield by about 52% over Ash and Control. Phosphorus treated plants produced significantly higher yield in Ash and CaCO₃ among liming treatments but similar results were observed among Inoculation and Inoculation+ Phosphorus under Control in liming. In the main Control pots however, soybean plants recorded higher grain yield when plants were treated with Phosphorus and Inoculation-Phosphorus (Figure 11).

Figure 11: The interaction effect of liming and soil amendment on grain yield at harvest. Bars represent standard error of difference (SED).
4.12 Correlation between days to flowering and days to podding

There was positive and significant (\(P = 000 \)) correlation between days to flowering and days to podding (Figure 12). The correlation between days to flowering and days to podding was strong with correlation coefficient of 0.74 (74%).

\[Y = 23.30 + 0.99x; \quad r = 0.74; \quad r^2 = 0.55; \quad P = 000 \]

Figure 12: the correlation effect of days to flowering to days to podding. Positive r value showed positive correlation and \(p = 000 \) indicated that the correlation is significant at \(p \leq 0.05 \).
4.13 Correlation between number of nodules and effective nodulation

Number of nodules correlated positively with effective nodulation and this correlation was positive and significant \((P = 000)\) (Figure 13). The correlation was very strong between number of nodules and effective nodulation with correlation coefficient of 0.92 (92 %).

\[
Y = 0.73x - 0.94; \ r = 0.92; \ r^2 = 0.84; \ P = 000
\]

Figure 13: the correlation effect of number of nodules to effective nodulation.
Positive r value showed positive correlation and \(p = 000\) indicated that the correlation is significant at \(p \leq 0.05\).

4.14 Correlation between number of nodules and number of pods per plants

Number of nodules correlated positively with number of pods per plant and this correlation was positive and significant \((P = 000)\) (Figure 14). The positive correlation was moderate
between number of nodules and number of pods per plant with correlation coefficient of 0.42 (42%).

Figure 14: the correlation effect of number of nodules to number of pods per plant. Positive r value showed positive correlation and p = 0.000 indicated that the correlation is significant at p ≤ 0.05.

4.15 Correlation between number of pods per plant to grain yield

There was positive moderate correlation between numbers of pods per plant to grain yield. Correlation coefficient that correlated between number of pods per plant to grain yield was 0.55 (55%) and this correlation was significant (P = 0.000) (Figure 15).
Figure 15: the correlation effect of number of pods per grain yield per hectare. Positive r value showed positive correlation and p = 0.000 indicated that the correlation is significant at p ≤ 0.05.

4.16 Correlation between dry shoot weight and grain yield

The increase in dry shoot weight influenced grain yield moderately and this indicated statistical significant (P = 0.000) between these two parameters of soybean tested. Dry shoot weight correlated moderately positive with grain yield. Correlation was positive and significant (P = 0.000) (Figure 16). The correlation coefficient was 0.46 (46 %) when dry shoot weight and grain yield were correlated.
Figure 16: the correlation effect of dry shoot weight per hectare to grain yield per hectare. Positive r value showed positive correlation and p = 000 indicated that the correlation is significant at p ≤ 0.05.

4.17 Plant chemical analysis

Nitrogen content among soybean plants was not significantly (p < 0.05) with Control recording low level of N among liming treatments. No statistical difference was observed with both liming and soil amendment treatments (Figure 17). Liming and soil amendment application consistently produced the highest level of Nitrogen than the Control (reference plant) but showed similar results to each other.

Liming with Phosphorus (CaCO$_3$+P) recorded the highest Nitrogen level with 2.25 % and limning and Phosphorus-Inoculation (CaCO$_3$+P+I) was the least in Nitrogen content with 1.84 %.
Figure 17: effect of liming and soil amendment on nitrogen level of plants. Bars represent standard error of difference (SED).

Phosphorus level varied significantly ($p < 0.01$) among liming and soil amendment treatments applied to plants (Figure 18). Ash (Inoculation-Phosphorus) treated plants significantly increased the phosphorus content in the plants than the other treatments and, Ash (Inoculation) significantly reduced phosphorus content in the plants. The phosphorus content in plants treated with ACT, CPI, CaCT, CI, CaP, CaPI, CP and Cc showed similar results.

Where: $\text{ACT}=\text{Oil palm leaf ash control}$, $\text{CPI}=\text{Control-phosphorus-Inoculation}$, $\text{CaCT} = \text{CaCO}_3$, $\text{CI} = \text{Control-Inoculation}$, $\text{CaP} = \text{CaCO}_3$, $\text{CaPI} = \text{CaCO}_3$-$\text{Phosphorus-Inoculation}$, $\text{CP} = \text{Control-Phosphorus}$ and $\text{Cc} = \text{Control-control}$.
Figure 18: effect of liming and soil amendment on phosphorus level of plants. Bars represent standard error of difference (SED).
CHAPTER FIVE

5.0 DISCUSSION

5.1 Plant height

Plant height was significantly affected by liming materials and the use of CaCO$_3$ influenced plant height significantly in soybean plants as compared to oil palm leaf ash and control as shown in figure 1. This could be due to good response of chemical or inorganic liming material to neutralize acidic soils and that could lead to the release of available nutrients for growth of the plants. This confirmed the work of Workneh et al (2013), who reported application of lime separately as well as in combination with nitrogen fertilizer gave significantly taller soybean than those crops grown without lime.

Soil amendment treatments to soybean plant gave significant variations in plant height. Plants that received phosphorus as well as combination of phosphorus+inoculation gave taller plants than those plants grown without phosphorus (Figure 2). The results indicated that, plants that received inoculation (Bradyrhizobium inoculum) had no effect on plant growth (Figure 2). This result agreed with the findings of Mesfin et al (2014), who reported that plant growth was increased in acid soil treated with Phosphorus fertilizer. This growth response of soybean to the application of P in acidic soil may be related with better availability of P in P fertilizers which increased P content in the soil.

5.2 Number of leaves per plant

The results indicated different liming treatments to soybean plants positively affected the number of leaves per plant and significant variation existed at 5 WAP and 8 WAP, but did not show any significant differences at 11 WAP as shown in figure 4.3. The
CaCO$_3$ consistently produced the highest number of leaves per plant and control gave similar results as Ash treatment. This finding supported the work of Mesfin et al (2014), who reported that, plant growth was increased in acid soil treated with and without lime.

The increased number of leaves per plant could also be attributed to the neutralization of acidic soil by liming material which enables the soil to both macro and micro nutrients in the soil for proper plant vegetative growth. This confirmed the findings of Crop Focus (2011), who reported that, soil pH < 5.6 creates a difficult environment for the bacteria to function efficiently as well affect soybean productivity.

Soil amendment affected the number of leaves per plant significantly but no significant differences were recorded at later stages ofthe plants growth (Figure 4). Phosphorus treated plants consistently recorded significantly highest number of leaves per plant while low numbers of leaves were recorded for the control, there was no difference among inoculation and phosphorus-inoculation.

5.3 Leaf area index

The results showed that, liming treatments affected leaf area index of soybean plants positively and significant variation existed at 5 WAP, 8 WAP and 11 WAP (Figure 4). This confirmed the findings of Crop Focus (2011), who reported that soil pH < 5.6 creates a difficult environment for the bacteria to function efficiently as well affect soybean productivity.

Soil amendment affected leaf area index per plant significantly but no significant differences was recorded at later stages of the plants growth (Figure 4). Phosphorus treated plants consistently recorded significantly highest leaf area index per plant while low
numbers of leaf area index were recorded for the control, inoculation and phosphorus-inoculation with no difference among them.

5.4 Fresh shoot weight

Fresh shoot weight produced per plant was significantly (p < 0.05) affected by liming and soil amendment treatments (Figure 5). CaCO₃ in combination with different soil amendment techniques produced significantly higher fresh shoot weight than their counter parts control and Ash. The results, therefore, show that the liming have unequal or irregular growth pattern in soybeans plants treated with lime as well as fresh shoot production potential. This could be due to good soil growth conditions because liming release nutrients to the soil component in neutralizing the acidic soil and making growth nutrients available at different rate for soybean plants. This confirmed the findings of Campbell (1990) and Muse and Mitchell (1995), who reported that, CaCO₃ varied in percentage concentrations in Ash and lime.

Fresh shoot weight of soybean significantly (p < 0.05) varied with plants treated with different soil amendment. Phosphorus and phosphorus-inoculation treated plants in different liming techniques gave significantly higher fresh shoot weight than control and inoculation which gave similar results (Figure 6). The results showed that fresh biomass increased with P application rate, yielding the highest fresh biomass (Figure 6). This result agreed favorably with the observations reported by Singh et al (2011), and Ayodele and Oso (2014), that legume biomass increased when phosphorus fertilizer was applied to the plants. There was fair correlation between dry shoot weight and grain yield with a correlation coefficient of 46 % (Figure 11).
5.5 **Dry straw weight**

Dry shoot weight was significantly ($p < 0.001$) influenced by different liming materials treated to soybean plants on the field (Figure 7). The treatment of CaCO$_3$ to soil significantly increased the shoot dry weight than control and Ash treated soybean plants. Shoot dry weight was significantly lower when compared to the application of CaCO$_3$ to the soil but Ash treated soybean plants dry weight were more than control treated soybean plants.

Dry shoot weight was significantly ($p < 0.001$) influenced by soybean plants treated with different soil amendment used in this study. The use of phosphorus fertilizer resulted in increased dry shoot weight over the use of phosphorus- inoculation but inoculation produced similar dry shoot weight to inoculation and phosphorus treated soybean plants. Control recorded the least weight of dry shoot weight among the different soil amendment methods used in this study (Figure 7).

5.6 **Days to 50 % flowering**

Flowering of soybean plants was significantly affected by liming and soil amendment. Inorganic lime (CaCO$_3$) in combination with different soil amendment treated on soybean plants reduced the number of days to 50 % flowering and the organic lime (Ash) in combination with different soil amendment increased the days to 50 % flowering as compare to the control. This confirmed the finding of Lee *et al* (2005), that, days to flowering in soybean plants are based on environment and first flower can occur few days before the actual predicted days and few days after the predicted days to flowers. There was strong correlation between days to flowering and days to podding with a correlation coefficient of 74% (Figure 9).
The reduction of days to flowering by inorganic lime (CaCO$_3$) treatment was contrary to this result of Tairo and Ndakidemi (2013), that flowering of soybeans starts at 41-44 days after planting.

There were fewer days to first flowering recorded by inorganic lime treated soybean plants and highest days recorded for organic lime treatments. This could be due to the plant growth nutrients differences in these two materials and the availability of such nutrients to the soybean plants. This assertion supported Risse and Gaskin (2013), who reported that, wood ash and lime treatment to plants gave similar results and both have benefit to crop productivity, but wood ash supplies additional nutrients. These additional nutrients from the ash could have influenced the days to flowering of the soybean higher than CaCO$_3$.

Phosphorus treated plants with different liming techniques gave reduced days to flowering than inoculation and phosphorus-inoculation. Days to flowering in soil amendment control recorded significantly higher than inoculation, phosphorus-inoculation and phosphorus. Even though there were significant differences among soybean plants treated with soil amendment but inoculation, phosphorus and phosphorus-inoculation recorded similar days to flowering and control was significantly higher. This indicated phosphorus and inoculation application to soybean plants can reduce the number of days to flowering. Phosphorus application reduced days to flowering more than inoculation.

5.7 Days to podding

Liming affected the number of days to podding of the soybean plants significantly (Table 5). Inorganic lime reduced the podding days by four (4) days and organic lime increased the podding days by seven (7) days. This could be due to the additional nutrients liming supplied to the soil which make the plants to exhibit longer the number of days to podding.
The days to podding recorded by CaCO₃ (inorganic lime), control (zero lime) and organic lime (Ash) were 67, 71 and 77 days respectively. This result contradict the findings of Tairo and Ndakidemi, (2013), who reported that, the number of days to podding were 46-49 days for glasshouse and 51-54 days for field experiment. There was strong positive correlation between days to flowering and days to podding with a correlation coefficient of 74% (Figure 11).

The days to podding was significantly affected by application of soil amendment (Table 5). Control and phosphorus-inoculation gave similar number of days to podding which was significantly different from inoculation and phosphorus treated plants. Phosphorus treated plants recorded 3 days fewer to the control treated plants and inoculation recorded 2 days more to the days recorded by the control. The results indicated that, phosphorus reduced days to podding and inoculation increased days to podding. However, plants treated with phosphorus and inoculation together did not indicate any effect on the number of days to podding. This could be attributed to the neutralization effect of inoculation and phosphorus which balance the separate effect of the two treatments on soybean plants.

5.8 Number of nodules per plant

The results indicated that, number of nodules recorded by inorganic lime (CaCO₃), control and organic lime (Ash) were 26, 18 and 15 respectively (Table 5). Liming affected number of nodules, inorganic lime (CaCO₃) gave significant higher number of nodules than control and organic lime (Ash). Control recorded higher number than Ash treated plants (Table 5). There was very strong correlation between number of nodules and effective nodulation with a correlation coefficient of 92 % (figure 4.12).
Inorganic lime (CaCO$_3$) increased number of nodules by 44% and organic lime (Ash) reduced number of nodules by 17%. This could be attributed to the amount of liming substances inorganic or organic lime can supply the soybean plants. This confirmed the report of Muse and Mitchell (1995), and Crop Focus (2011), that Ash contain pH ranging from 9 to 13 and soil with pH greater than 8.0 creates a difficult environment for the bacteria to function efficiently as well affect soybean productivity respectively.

Number of nodules recorded by control, phosphorus, inoculation and phosphorus-inoculation were 15, 19, 22 and 22 respectively (Table 5). This result contradicted the finding of Tahir et al (2009), that, number of nodules in soybean plants treated with inoculant, phosphorus and phosphorus-inoculant were 125, 93 and 140 respectively. The inoculation of soybean plants with bacteria has increased number of nodules by 47% and plants that received phosphorus fertilizer only increased effective nodulation by 27%. However, plants treated with inoculation and phosphorus fertilizer gave similar results but higher number of nodules. This could be attributed to the presence of bacteria and availability of phosphorus. This confirmed the finding of Singh et al (2011), reported that, availability of P can increase the intensity of nodulation.

5.9 Effective nodulation

The results indicated liming affected effective nodulation significantly. There was very strong positive correlation between number of nodules and effective nodulation with a correlation coefficient of 92% (Figure 12). Inorganic lime (CaCO$_3$) increased effective nodulation by 27% and organic lime (Ash) reduced effective nodulation by 27%. This could be attributed to the amount of liming substances inorganic or organic lime can supply the soybean plants. This confirmed the report of Muse and Mitchell (1995), and Crop Focus
(2011), that Ash contain pH ranging from 9 to 13 and soil with pH greater than 8.0 creates a difficult environment for the bacteria to function efficiently as well affect soybean productivity respectively.

The inoculation of soybean plants with bacteria has increased effective nodulation by 72% and plants that received phosphorus fertilizer only increased effective nodulation by 18%. However, plants treated with inoculation and phosphorus fertilizer gave similar results as plants treated with inoculants. This could be attributed to the presence of bacteria and availability of phosphorus. This confirmed the finding of Singh et al (2011), reported that, availability of P can increase the intensity of nodulation.

5.10 Grain yield per hectare

Grain yield was influenced by the liming used and inoculation-phosphorus. Inorganic lime (CaCO$_3$) and phosphorus treated plants recorded the highest yield of grain than other combinations of liming and soil amendment treatments. This might be due to increased pH by inorganic lime (CaCO$_3$) and P availability to the soil created better environmental conditions for plant growth. This confirms an earlier report that environmental stress affects yield through controlled sequential formation and growth of node, reproductive node, pod and seed (Board and Kahlon, 2011). There was moderate correlation between number of nodules to grain yield and fair correlation to dry shoot weight with correlation coefficients of 55% and 46% respectively (Figure 9 and 15).
CHAPTER SIX

6.0 CONCLUSION AND RECOMMENDATIONS

6.1 Conclusion

The study showed that liming and soil amendment promoted soybean plants growth and development in the pot experiment. Soybean plants treated with inorganic lime (CaCO3) and phosphorus fertilizer gave the highest plant height.

It also established that, liming and soil amendment enhanced number of leaves, days to 50% flowering, days to podding, dry shoot weight, hence gave good field practices. This gave plants a better chance to harness soil nutrients, and liming and phosphorus fertilizer had an influence on vigorous vegetative growth and eventually into yield.

6.2 Recommendations

The study recommended that acidic soils should be limed to improve the availability of plant growth nutrients before soybeans can be planted to achieve maximum yield. This may be achieved by adding 2 tonnes per hectare of wood Ash or 18 grams per plant of CaCO3 to increase the pH of the soil. The ash will add micro nutrients to the soil in addition to the macronutrients it adds to the soil. These will improve the overall growing conditions of the soil for better soybeans production.

It is recommended that the used of inoculants in the production of soybean should be encouraged because the incorporation of the inoculants into the soil promoted plant vegetative growth of soybean. The inoculants promoted nodules in the soybean plants which promoted the use of atmospheric nitrogen of the environment within the experimental set up.
Application of phosphorus fertilizer promoted vegetative growth and yield of the plants. It is therefore recommended that farmers should use CaCO$_3$ and phosphorus fertilizer for soybean production under acidic condition to obtain higher grain yield. The study recommended that in future field trials should be done on acidic soils for better recommendation to farmers.
REFERENCES

Crop Focus (2011). Factors affecting soybeans nodulations; Soybean Nodulation Concerns. Pioneer Agronomy Sciences

Rhizobium interaction studies on biological nitrogen fixation and yield of lentil. *The J. Agric. Sci.* (110), 141-144.

analysis and in-silico mapping of a drought-inducible gene coding for

pea production by co-inoculation with fluorescent pseudomonas and

Dugje, I. Y., Omoigui, L.O., Ekeleme, F., Bandyopaolhyay, Lava Kumar, R. P. and

Martin, J. (2005). Fitting soybean and cowpea genotypes into cropping systems in low available phosphorus and high aluminium acid soils of southern Cameroon. PhD Dissertation, University of Hannover, Hannover. Available at

APPENDICES

Appendix 1: ANOVA for plant height at 5 WAP

<table>
<thead>
<tr>
<th>DF</th>
<th>SS</th>
<th>MS</th>
<th>F</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Replication 3</td>
<td>5.23</td>
<td>1.74</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

15
<table>
<thead>
<tr>
<th></th>
<th>DF</th>
<th>SS</th>
<th>MS</th>
<th>F</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Replication</td>
<td>3</td>
<td>10.73</td>
<td>3.60</td>
<td>0.18</td>
<td></td>
</tr>
<tr>
<td>Liming2</td>
<td>82.13</td>
<td>41.1</td>
<td>8.02</td>
<td>0.020</td>
<td></td>
</tr>
<tr>
<td>Residual</td>
<td>6</td>
<td>30.71</td>
<td>5.12</td>
<td>1.47</td>
<td>< 0.001</td>
</tr>
<tr>
<td>Soil Amendment</td>
<td>3</td>
<td>159.23</td>
<td>53.08</td>
<td>15.28</td>
<td>0.072</td>
</tr>
<tr>
<td>Liming * Soil Amendment</td>
<td>6</td>
<td>46.21</td>
<td>7.70</td>
<td>2.22</td>
<td></td>
</tr>
<tr>
<td>Error</td>
<td>27</td>
<td>93.81</td>
<td>3.48</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>47</td>
<td>417.31</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Degree of freedom (DF), Sum of squares (SS), Mean sum of square (MS), F ratio (F) and P-Value (P).

Appendix 2: ANOVA for plant height at 8 WAP
<table>
<thead>
<tr>
<th>Treatment</th>
<th>DF</th>
<th>SS</th>
<th>MS</th>
<th>F</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Liming</td>
<td>2</td>
<td>198.04</td>
<td>99.02</td>
<td>4.97</td>
<td>0.053</td>
</tr>
<tr>
<td>Residual</td>
<td>6</td>
<td>119.46</td>
<td>719.91</td>
<td>3.94</td>
<td></td>
</tr>
<tr>
<td>Soil Amendment</td>
<td>3</td>
<td>108.23</td>
<td>36.08</td>
<td>7.13</td>
<td>< 0.001</td>
</tr>
<tr>
<td>Liming * Soil Amendment</td>
<td>6</td>
<td>25.95</td>
<td>4.33</td>
<td>0.86</td>
<td>0.540</td>
</tr>
<tr>
<td>Error</td>
<td>27</td>
<td>136.56</td>
<td>5.06</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>47</td>
<td>598.98</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Degree of freedom (DF), Sum of squares (SS), Mean sum of square (MS), F ratio (F) and P-Value (P).

Appendix 3: ANOVA for plant height at 11 WAP

<table>
<thead>
<tr>
<th>Treatment</th>
<th>DF</th>
<th>SS</th>
<th>MS</th>
<th>F</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Replication</td>
<td>3</td>
<td>30.083</td>
<td>10.02</td>
<td>80.51</td>
<td></td>
</tr>
<tr>
<td>Source</td>
<td>SS</td>
<td>MS</td>
<td>F</td>
<td>P</td>
<td></td>
</tr>
<tr>
<td>--------------------------------</td>
<td>--------</td>
<td>-------</td>
<td>---------</td>
<td>----------</td>
<td></td>
</tr>
<tr>
<td>Liming 2</td>
<td>219.19</td>
<td>109.65</td>
<td>5.53</td>
<td>0.044</td>
<td></td>
</tr>
<tr>
<td>Residual 6</td>
<td>119.04</td>
<td>19.84</td>
<td>4.45</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Soil Amendment 3</td>
<td>99.42</td>
<td>33.14</td>
<td>7.43</td>
<td>< 0.001</td>
<td></td>
</tr>
<tr>
<td>Liming * Soil Amendment 6</td>
<td>15.71</td>
<td>2.62</td>
<td>0.59</td>
<td>0.737</td>
<td></td>
</tr>
<tr>
<td>Error</td>
<td>120.38</td>
<td>4.46</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>603.92</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Degree of freedom (DF), Sum of squares (SS), Mean sum of square (MS), F ratio (F) and P-Value (P).

Appendix 4: ANOVA for Leaf area index at 5 WAP

<table>
<thead>
<tr>
<th>Source</th>
<th>SS</th>
<th>MS</th>
<th>F</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Replication 3</td>
<td>0.012</td>
<td>0.0041</td>
<td>0.88</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DF</td>
<td>SS</td>
<td>MS</td>
<td>F</td>
</tr>
<tr>
<td>---------------------</td>
<td>----</td>
<td>------</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td>Liming</td>
<td>2</td>
<td>0.645</td>
<td>0.322</td>
<td>69.7</td>
</tr>
<tr>
<td>Residual</td>
<td>6</td>
<td>0.028</td>
<td>0.005</td>
<td>2.03</td>
</tr>
<tr>
<td>Soil Amendment</td>
<td>3</td>
<td>0.391</td>
<td>0.130</td>
<td>57.3</td>
</tr>
<tr>
<td>Liming *Soil Amend</td>
<td>6</td>
<td>0.070</td>
<td>0.011</td>
<td>4.88</td>
</tr>
<tr>
<td>Error</td>
<td>27</td>
<td>0.061</td>
<td>0.002</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>47</td>
<td>1.203</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Degree of freedom (DF), Sum of squares (SS), Mean sum of square (MS), F ratio (F) and P-Value (P).

Appendix 5: ANOVA for Leaf area index at 8 WAP

<table>
<thead>
<tr>
<th></th>
<th>DF</th>
<th>SS</th>
<th>MS</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Replication</td>
<td>3</td>
<td>0.019</td>
<td>0.006</td>
<td>1.35</td>
</tr>
</tbody>
</table>
Appendix 6: ANOVA for Leaf area index at 11 WAP

<table>
<thead>
<tr>
<th></th>
<th>DF</th>
<th>SS</th>
<th>MS</th>
<th>F</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Replication</td>
<td>3</td>
<td>0.0122</td>
<td>0.0041</td>
<td>0.88</td>
<td></td>
</tr>
</tbody>
</table>

Degree of freedom (DF), Sum of squares (SS), Mean sum of square (MS), F ratio (F) and P-Value (P).
Degree of freedom (DF), Sum of squares (SS), Mean sum of square (MS), F ratio (F) and P-Value (P).

Appendix 7: ANOVA for Number of leaves at 5 WAP

<table>
<thead>
<tr>
<th></th>
<th>DF</th>
<th>SS</th>
<th>MS</th>
<th>F</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Replication</td>
<td>3</td>
<td>30.32</td>
<td>10.076</td>
<td>1.33</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DF</td>
<td>SS</td>
<td>MS</td>
<td>F</td>
<td>P</td>
</tr>
<tr>
<td>----------------------</td>
<td>----</td>
<td>--------</td>
<td>-------</td>
<td>--------</td>
<td>------</td>
</tr>
<tr>
<td>Liming2</td>
<td>32</td>
<td>16</td>
<td>2.12</td>
<td>0.201</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Residual6</td>
<td>45.33</td>
<td>7.56</td>
<td>2.64</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Soil Amendment3</td>
<td>42.06</td>
<td>14.02</td>
<td>4.90</td>
<td>0.008</td>
<td></td>
</tr>
<tr>
<td>Liming * Soil Amendment</td>
<td>6</td>
<td>25</td>
<td>4.17</td>
<td>1.46</td>
<td>0.230</td>
</tr>
<tr>
<td>Error 27</td>
<td>77.19</td>
<td>2.86</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total 47</td>
<td>251.81</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Degree of freedom (DF), Sum of squares (SS), Mean sum of square (MS), F ratio (F) and P-Value (P).

Appendix 8: ANOVA for number of leaves at 8 WAP

<table>
<thead>
<tr>
<th></th>
<th>DF</th>
<th>SS</th>
<th>MS</th>
<th>F</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Replication 3</td>
<td>40.50</td>
<td>16.50</td>
<td>1.20</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

16
<table>
<thead>
<tr>
<th></th>
<th>DF</th>
<th>SS</th>
<th>MS</th>
<th>F</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Liming2</td>
<td></td>
<td>145.79</td>
<td>72.90</td>
<td>5.31</td>
<td>0.047</td>
</tr>
<tr>
<td>Residual</td>
<td>6</td>
<td>82.38</td>
<td>13.73</td>
<td>1.34</td>
<td></td>
</tr>
<tr>
<td>Soil Amendment</td>
<td>3</td>
<td>108.50</td>
<td>36.17</td>
<td>3.53</td>
<td>0.028</td>
</tr>
<tr>
<td>Liming * Soil Amendment</td>
<td>6</td>
<td>73.88</td>
<td>12.31</td>
<td>1.20</td>
<td>0.336</td>
</tr>
<tr>
<td>Error</td>
<td>27</td>
<td>276.62</td>
<td></td>
<td>10.25</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>47</td>
<td>736.67</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Degree of freedom (DF), Sum of squares (SS), Mean sum of square (MS), F ratio (F) and P-Value (P).

Appendix 9: ANOVA for Number of leaves at 11 WAP

<table>
<thead>
<tr>
<th></th>
<th>DF</th>
<th>SS</th>
<th>MS</th>
<th>F</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Replication</td>
<td>3</td>
<td>3096.9</td>
<td>1032.3</td>
<td>1.10</td>
<td></td>
</tr>
</tbody>
</table>
Liming 2 1515.5 757.7 0.81 0.489

Residual 6 5623.2 937.2 1.13

Soil Amendment 3 3432.1 1144 1.37 0.272

Liming * Soil Amendment 6 4466.5 744.4 0.89 0.513

Error 27 272473.2 832.3

Total 47 40607.3

Degree of freedom (DF), Sum of squares (SS), Mean sum of square (MS), F ratio (F) and P-Value (P).

Appendix 10: ANOVA for Days to 50 % flowering

<table>
<thead>
<tr>
<th>DF</th>
<th>SS</th>
<th>MS</th>
<th>F</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Replication 3</td>
<td>180.75</td>
<td>60.250</td>
<td>16.81</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DF</td>
<td>SS</td>
<td>MS</td>
<td>F</td>
</tr>
<tr>
<td>------------------------</td>
<td>----</td>
<td>------</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td>Liming</td>
<td>2</td>
<td>276.5</td>
<td>138.25</td>
<td>38.58</td>
</tr>
<tr>
<td>Residual</td>
<td>6</td>
<td>21.5</td>
<td>3.583</td>
<td>3.15</td>
</tr>
<tr>
<td>Soil Amendment</td>
<td>3</td>
<td>92.42</td>
<td>30.81</td>
<td>27.05</td>
</tr>
<tr>
<td>Liming * Soil Amendment</td>
<td>6</td>
<td>19.33</td>
<td>3.2</td>
<td>2.83</td>
</tr>
<tr>
<td>Error</td>
<td>27</td>
<td>30.75</td>
<td>1.41</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>47</td>
<td>621.25</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Degree of freedom (DF), Sum of squares (SS), Mean sum of square (MS), F ratio (F) and P-Value (P).

Appendix 11: ANOVA for Days to podding

<table>
<thead>
<tr>
<th></th>
<th>DF</th>
<th>SS</th>
<th>MS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Replication</td>
<td>3</td>
<td>20.25</td>
<td>6.750</td>
</tr>
<tr>
<td></td>
<td>DF</td>
<td>SS</td>
<td>MS</td>
</tr>
<tr>
<td>----------------</td>
<td>----</td>
<td>--------</td>
<td>-----</td>
</tr>
<tr>
<td>Liming</td>
<td>2</td>
<td>939.54</td>
<td>469.77</td>
</tr>
<tr>
<td>Residual</td>
<td>6</td>
<td>6.13</td>
<td>1.02</td>
</tr>
<tr>
<td>Soil Amendment</td>
<td>3</td>
<td>109.08</td>
<td>36.36</td>
</tr>
<tr>
<td>Liming * Soil Amendment</td>
<td>6</td>
<td>7.29</td>
<td>1.22</td>
</tr>
<tr>
<td>Error</td>
<td>27</td>
<td>13.63</td>
<td>0.50</td>
</tr>
<tr>
<td>Total</td>
<td>47</td>
<td>1095.92</td>
<td></td>
</tr>
</tbody>
</table>

Degree of freedom (DF), Sum of squares (SS), Mean sum of square (MS), F ratio (F) and P-Value (P).

Appendix 12: ANOVA for number of nodules per plant

<table>
<thead>
<tr>
<th></th>
<th>DF</th>
<th>SS</th>
<th>MS</th>
<th>F</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Replication</td>
<td>3</td>
<td>121.563</td>
<td>40.52</td>
<td>0.53</td>
<td></td>
</tr>
</tbody>
</table>
| Source of Variation | DF | SS | MS | F | P-
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Liming</td>
<td>2</td>
<td>1102.04</td>
<td>551.02</td>
<td>7.17</td>
<td>0.026</td>
</tr>
<tr>
<td>Residual</td>
<td>6</td>
<td>461.13</td>
<td>76.85</td>
<td>8.98</td>
<td></td>
</tr>
<tr>
<td>Soil Amendment</td>
<td>3</td>
<td>380.06</td>
<td>126.69</td>
<td>14.80</td>
<td><0.001</td>
</tr>
<tr>
<td>Liming * Soil Amendment</td>
<td>6</td>
<td>84.63</td>
<td>14.10</td>
<td>1.65</td>
<td>0.172</td>
</tr>
<tr>
<td>Error</td>
<td>27</td>
<td>231.06</td>
<td>8.56</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>47</td>
<td>2380.48</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Degree of freedom (DF), Sum of squares (SS), Mean sum of square (MS), F ratio (F) and P-Value (P).

Appendix 13: ANOVA for number of effective nodules

<table>
<thead>
<tr>
<th>Source of Variation</th>
<th>DF</th>
<th>SS</th>
<th>MS</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Replication</td>
<td>3</td>
<td>8.562</td>
<td>2.854</td>
<td>0.10</td>
</tr>
<tr>
<td>Source of Variation</td>
<td>DF</td>
<td>SS</td>
<td>MS</td>
<td>F</td>
</tr>
<tr>
<td>---------------------</td>
<td>----</td>
<td>--------</td>
<td>--------</td>
<td>-------</td>
</tr>
<tr>
<td>Liming</td>
<td>2</td>
<td>520.54</td>
<td>260.27</td>
<td>9.51</td>
</tr>
<tr>
<td>Residual</td>
<td>6</td>
<td>164.13</td>
<td>27.35</td>
<td>3.85</td>
</tr>
<tr>
<td>Soil Amendment</td>
<td>3</td>
<td>408.06</td>
<td>136.02</td>
<td>19.12</td>
</tr>
<tr>
<td>Liming * Soil Amendment</td>
<td>6</td>
<td>61.131</td>
<td>10.19</td>
<td>1.43</td>
</tr>
<tr>
<td>Error</td>
<td>27</td>
<td>192.06</td>
<td>7.11</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>47</td>
<td>1354.48</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Degree of freedom (DF), Sum of squares (SS), Mean sum of square (MS), F ratio (F) and P-Value (P).

Appendix 14: ANOVA for number of pods per plant

<table>
<thead>
<tr>
<th>Source of Variation</th>
<th>DF</th>
<th>SS</th>
<th>MS</th>
<th>F</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Replication</td>
<td>3</td>
<td>119.229</td>
<td>39.743</td>
<td>0.72</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DF</td>
<td>SS</td>
<td>MS</td>
<td>F</td>
<td>P</td>
</tr>
<tr>
<td>----------------</td>
<td>-----</td>
<td>------</td>
<td>-----</td>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td>Liming</td>
<td>2</td>
<td>663.54</td>
<td>331.74</td>
<td>6.01</td>
<td>0.037</td>
</tr>
<tr>
<td>Residual</td>
<td>6</td>
<td>330.96</td>
<td>55.16</td>
<td>18.72</td>
<td>< 0.001</td>
</tr>
<tr>
<td>Soil Amendment</td>
<td>3</td>
<td>224.40</td>
<td>74.80</td>
<td>25.38</td>
<td>< 0.001</td>
</tr>
<tr>
<td>Liming * Soil Amendment</td>
<td>6</td>
<td>23.79</td>
<td>3.97</td>
<td>1.35</td>
<td>0.272</td>
</tr>
<tr>
<td>Error</td>
<td>27</td>
<td>79.56</td>
<td>2.95</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>47</td>
<td>1441.48</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Degree of freedom (DF), Sum of squares (SS), Mean sum of square (MS), F ratio (F) and P-Value (P).

Appendix 15: ANOVA for fresh shoot weight

<table>
<thead>
<tr>
<th></th>
<th>DF</th>
<th>SS</th>
<th>MS</th>
<th>F</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Replication</td>
<td>3</td>
<td>10.023</td>
<td>3.338</td>
<td>4.24</td>
<td></td>
</tr>
</tbody>
</table>

17.
<table>
<thead>
<tr>
<th>Treatment</th>
<th>DF</th>
<th>SS</th>
<th>MS</th>
<th>F</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Liming</td>
<td>5</td>
<td>55.27</td>
<td>27.64</td>
<td>35.14</td>
<td>< 0.001</td>
</tr>
<tr>
<td>Residual</td>
<td>6</td>
<td>4.72</td>
<td>0.79</td>
<td>11.87</td>
<td></td>
</tr>
<tr>
<td>Soil Amendment</td>
<td>3</td>
<td>10.25</td>
<td>3.42</td>
<td>51.59</td>
<td>< 0.001</td>
</tr>
<tr>
<td>Liming * Soil Amendment</td>
<td>6</td>
<td>2.45</td>
<td>0.41</td>
<td>6.16</td>
<td>< 0.001</td>
</tr>
<tr>
<td>Error</td>
<td>27</td>
<td>1.79</td>
<td>0.07</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>47</td>
<td>84.50</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Degree of freedom (DF), Sum of squares (SS), Mean sum of square (MS), F ratio (F) and P-Value (P).

Appendix 16: ANOVA for dry shoot weight

<table>
<thead>
<tr>
<th>DF</th>
<th>SS</th>
<th>MS</th>
<th>F</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>10.491</td>
<td>3.497</td>
<td>5.60</td>
<td></td>
</tr>
<tr>
<td>Source</td>
<td>DF</td>
<td>SS</td>
<td>MS</td>
<td>F</td>
</tr>
<tr>
<td>-------------------------</td>
<td>-----</td>
<td>-------</td>
<td>-------</td>
<td>--------</td>
</tr>
<tr>
<td>Liming</td>
<td>2</td>
<td>50.86</td>
<td>25.43</td>
<td>40.75</td>
</tr>
<tr>
<td>Residual</td>
<td>6</td>
<td>3.74</td>
<td>0.62</td>
<td>8.62</td>
</tr>
<tr>
<td>Soil Amendment</td>
<td>3</td>
<td>9.25</td>
<td>3.08</td>
<td>42.63</td>
</tr>
<tr>
<td>Liming * Soil Amendment</td>
<td>6</td>
<td>0.99</td>
<td>0.17</td>
<td>2.29</td>
</tr>
<tr>
<td>Error</td>
<td>27</td>
<td>1.95</td>
<td>0.072</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>47</td>
<td>77.30</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Degree of freedom (DF), Sum of squares (SS), Mean sum of square (MS), F ratio (F) and P-Value (P).

Appendix 17: ANOVA for grain yield

<table>
<thead>
<tr>
<th>Source</th>
<th>DF</th>
<th>SS</th>
<th>MS</th>
<th>F</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Replication</td>
<td>3</td>
<td>0.238</td>
<td>0.079</td>
<td>5.44</td>
<td></td>
</tr>
<tr>
<td>Source of Variation</td>
<td>DF</td>
<td>SS</td>
<td>MS</td>
<td>F</td>
<td>P</td>
</tr>
<tr>
<td>---------------------</td>
<td>----</td>
<td>-----</td>
<td>-----</td>
<td>-------</td>
<td>------</td>
</tr>
<tr>
<td>Liming 2</td>
<td>2</td>
<td>3.06</td>
<td>1.53</td>
<td>104.63</td>
<td>< 0.001</td>
</tr>
<tr>
<td>Residual</td>
<td>6</td>
<td>0.09</td>
<td>0.01</td>
<td>1.54</td>
<td></td>
</tr>
<tr>
<td>Soil Amendment 3</td>
<td>3</td>
<td>0.99</td>
<td>0.33</td>
<td>34.81</td>
<td>< 0.001</td>
</tr>
<tr>
<td>Liming * Soil Amendment 6</td>
<td>6</td>
<td>0.34</td>
<td>0.06</td>
<td>6.06</td>
<td>< 0.001</td>
</tr>
<tr>
<td>Error</td>
<td>27</td>
<td>0.26</td>
<td>0.01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>47</td>
<td>4.97</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Degree of freedom (DF), Sum of squares (SS), Mean sum of square (MS), F ratio (F) and P-Value (P).