

Effect of plant density and mineral fertilizer application on yield and yield components of two groundnuts (*Arachis hypogaea* L) varieties in Northern Mozambique

By: H. V. Colial, Nancy das R. Horacio and B. K. Steve

Nairobi, October 22 2012

METODOLOGIES

RESULTS AND DISCUSSIONS

CONCLUSSIONS

BACKGROUND

- Groundnut as legume is a source of oil (40-50%), protein (20-40%) and carbohydrates (10-20%) for human food, animal feed and industrial raw materials.
- G/nut has ability to fix atmospheric nitrogen and provide residual nitrogen to subsequent crop.

- Potential g/nut grain yield in Mozambique is as high above 4 t/ha, but several biotic and abiotic constraints reduce it as low as 200 kg/ha in smallholder farmers' fields
- Biotic factors that cause yield reduction are insect pests, disease and parasitic weeds.
- The abiotic factors that cause yield reduction are drought, low opportunity of market, low soil fertility, low seed quality and poor agronomic practices.

 To assess the response of groundnuts to the application of P, lime and starter N.

 To determine the effect of planting densities and their interactions with P and lime on groundnuts yield and yield components.

METODOLOGIES

- Muriaze site with 377m above sea level, 15.28°S latitude and 39.32° E Longitude
- Nametil site with 161m above sea level, 15.740S latitude and 39.380 E Longitude

	Sites	K mg/kg	Org_ C %	P mg/kg	рН Water
	Nametil	29.84	0.38	1.49	5.77
	Muriaze	99.13	1.21	2.35	6.18

Putting nitrogen fixation to work for smallholder farmers in Africa

METODOLOGIES

- Varieties:
 - Mamane virginia type
 - Nametil spanish type
- Mineral fertilizes rates:
 - P 20 kg/ha in the form of SSP
 - N 40 kg/ha in the form of Urea
 - Lime 1000 kg/ha (Dolomitic lime)
- Row spacing:
 - 50x15 cm (133,333 plts/ha)
 - 75x20cm (66,667 plts/ha)

RESULTS AND DISCUSIONS

Effect of Sites, Varieties, Row spacing and Mineral fertilizers on pod load, SDM and Mineral fertilizers on pod load, S

Sites	Pod load	SDM (g/plt)	Yield (t/ha)
Muriaze	29 a	20.8 b	1.28 b
Nametil	18 b	23.9 a	3.77 a
Varieties			
nametil	24 a	19.8 b	2.69 a
mamane	23 a	24.9 a	2.34a
Row spacing			
50x15	19 b	19.2 b	1.11 b
75x20	27 a	24.7 a	3.58 a
Mineral fertilizes			
None	20 c	17.8 c	1.74 b
Р	24 b	22.6 b	2.24 b
P+lime	23 b	23.8 b	3.11 a
P+lime+Urea	29 a	27.7 a	3.48 a
3 WAYS ANOVA			
Row spacing (R.)	p<0.0001		
Sites (S)	p<0.0001		
Treatemts(T)	p<0.0022		
TxR Interaction	p<0.0074		
SxT Interaction	p<0.0009		
SxTxR Interaction	p<0.0001		

mamane

mamane+P+Lime

Mean yield (ton/ha) of mamane and nametil varieties mineral fertilizes across the two sites (Muriaze and Name

Mean yield (ton/ha) of the mamane and nametil varieties with mineral fertilizes in both row spacing across the two sites (Muriaze and Mar

Correlation coefficient of growth parameters component with grain yield across the sites

Yield components /growth		Sites	
parameters	Muriaze	Nametil	
Grain yield (ton/ha)	1	1	
seed size (g)	0.010	0.506	
Pod load	0.089	0.078	
Nodule No/plt	0.116	0.150	
100-nodule weight (g)	0.004	0.217	
Shoot biomass (g/plt)	0.260	0.017	
Root biomass (g/plt)	0.184	0.659	
Root Shoot Ratio (RSR)	-0.395	-0.708	
Plant height (cm)	-0.283	-0.489	
Rosette infest (%)	-0.352	-0.019	
Empty pod No/plant	-0.453	-0.043	
Shelling (%)	-0.441	-0.206	
50% of Flowering days	-0.278	0.587	

- The treatments performed significantly different within each site and the performance was consistent across sites. Nametil site gave high yield (3.77 ton/ha).
- Row spacing and mineral fertilizer, played an important role in phenotypic expression of grain yield, yield components and plant growth parameters of groundnut.

Conclusion

- Combined application of P and Lime improved yield of groundnut varieties. Treatment effect was more pronounced Nametil site.
- The correlation analysis showed that yield component and growth parameters were positively correlated with grain yield at all sites.
- The grain yield was significantly reduced due to the reduction of yield components and plant growth parameters that were also significantly reduced by when P and lime was not used and/or when a planting density of 50x15cm was used.

ACKNOWLEDGEMENTS

THANK YOU FOR LISTENING